Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Due to financial wherewithal, only shallow wells, which are extremely prone to seasonal groundwater decline, are constructed in the study area. Generally, new groundwater wells are designed to follow the criteria of the old wells, which may be vulnerable to substantial groundwater depletion through water-level decline. Going by this, newer groundwater wells constructed near older ones are 100% susceptible to the uninvestigated depletion associated with the older ones. The method used integrates vertical electrical sounding (VES) technique employing the Schlumberger electrode configuration, which measured the resistivity of geologic layers, depths and thickness with hydrogeological information, which constrained the VES interpretation. The aim was to check the spread of groundwater depth–water table ratios for the shallow aquifers. The 1-D resistivity analysis shows that the topsoil/motley topsoil has resistivity ranging from 71.8 to 1964.1 Ωm and mean 586.9 Ωm, while its depth ranges between 0.5 and 11.3 m with mean value of 2.8 m. In layer 2, while the resistivity spans between 71.3 and 1488.6 Ωm with mean value 444.6 Ωm, the depth and thickness, respectively, have a range and mean value of 2.0–170.4 m and 41.9 m and 3.4–112.2 m and 41.0 m. The third layer resistivity ranges from 7.5 to 2332.5 Ωm with mean value of 797.2 m. The depth of burial and the thickness of the third layer, respectively, have mean of 63.0 m and 74.6 m and range of 40.3–106.3 m and 50.1–115.6 m. The fourth layer penetrated by current at 150 m half of current electrode separation has undefined thickness and depth with respective resistivity range and mean of 25.3–2385.3 Ωm and 508.4 Ωm. Based on the resistivity results and nearby borehole data, sizeable numbers of borehole in the area have depths (between 40 and 80 m) that are remarkably greater than the water table depths (1.4–37.6 m). A few boreholes have depths that are sparingly greater than water levels and by the present climate change; they are not likely to be depleted by virtue of water-level declines as the well depth–water table depth ratios are still sustainable to ward of the depletion associated with water-level decline. The results indicate the spatial spread of shallow hydrogeological units as well as the water-level architecture, which is believed to provide useful information that will complement lithological logs while planning for newer groundwater well development in the area.
EN
Sundry soils/rocks are characterized by electrical properties with clearly or obscurely expressed anisotropies. These anisotropic efects may be low, moderate or high depending on the coefcient of anisotropy (λ). The vertical electrical sounding technique employing Schlumberger electrode confguration and lithological information from boreholes were deployed to characterize the lithological diversity in homogeneous and anisotropic geologic units that serve as aquifer systems and their overlaying layers in the coastal region of Akwa Ibom State. Based on the λ, the assessed volume of sedimentary formation is classifed into low anisotropy λ<1.2 , moderate anisotropy (1.2 < λ ≤ 1.3) and high anisotropy (λ > 1.3) with alluvium (64.3%), inter-bedded shale and sandstone (14.3%) and shale and slate (21.3%). The estimated percentage of respective compositional coverage indicates that alluvium is dominant, while the blended inter-bedded shale and sandstone as well as the shale and slate are minor geologic units in the Benin Formation. Inferred index of spread of alluvium indicates that the homogeneous and anisotropic units assessed are intrinsic/microscopic in nature as identifed by the impressed current that passed through geologic system. The results showcased that the plot between the strike-dependent resistivity ( ρθ ) at arbitrary chosen strike and geometric mean resistivity ( ρm ) can be used as a yardstick for inferring the degree of consistency of geologic compositions in homogeneous and anisotropic media. Both the quantitative (graphic) and qualitative (contour) results portend the thin possibility of having anisotropy free geologic units. The finding proposes that ground resistivity measurements and interpretations of geologic structures should be constrained by borehole information in order to frm up the intended plans for obtaining clearer, defendable and well-resolved subsurface structures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.