This article deals with the first hitting times of a Bessel process to a square-root boundary. We obtain the explicit form of the distribution function of the hitting time by means of zeros of the confluent hypergeometric function with respect to the first parameter. In deducing the distribution function, the time that a radial Ornstein-Uhlenbeck process reaches a certain point is very useful and plays an important role. We also give its distribution function in the case that the starting point is closer to the origin than the arrival site.
We study a precise asymptotic behavior of the tail probability of the first hitting time of the Bessel process. We deduce the order of the third term and decide the explicit form of its coefficient.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.