Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Determination and pharmacokinetics of calycanthine in rat plasma by UPLC-MS/MS
EN
Calycanthine is an important class of alkaloids extracted and isolated from the roots, leaves, flowers and fruits of Chimonanthus praecox. In this work, the UPLC-MS/MS method was used for determination of calycanthine in rat plasma, and the pharmacokinetics in rats were investigated. Midazolam was used as an internal standard (IS), and methanol precipitation method was used to pretreatment the rat plasma samples. Chromatographic separation was achieved on a UPLC BEH C18 (50 3 2.1 mm, 1.7 mm) column with the mobile phase of methanol- 0.1% formic acid aqueous solution with gradient elution. Multiple reaction monitoring (MRM) mode with positive ionization was applied for quantitative analysis, m/z 347.3 → 246.7 and 326.2 → 291.4 for calycanthine and IS, respectively. The results indicated that within the range of 1–200 ng/mL, linearity of calycanthine in rat plasma was good (r > 0.995), and the lower limit of quantification (LLOQ) was 1 ng/mL. Accuracy range was between 90.6 and 109.4%, precision (RSD) of calycanthine was less than 14%. The matrix effect was between 97.9% and 105.4%, the recovery was better than 85.6%. The developed UPLC-MS/MS method was successfully applied in the pharmacokinetics of calycanthine in rats after oral and intravenous administration. The absolute bioavailability of the calycanthine was 37.5% in rats.
EN
An ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was established to determine the hapepunine in mouse blood, and the pharmacokinetics of hapepunine after intravenous (1.0 mg/kg) and intragastric (2.5, 5, and 10 mg/kg) administrations was studied. Delavinone was used as an internal standard. The UPLC ethylene bridged hybrid (BEH) C18 column was used for chromatographic separation. The mobile phase consisted of acetonitrile and 0.1% formic acid with a gradient elution flow rate of 0.4 mL/min. Multiple reaction monitoring (MRM) mode was used for quantitative analysis of hapepunine in electrospray ionization (ESI) positive interface. Proteins from mouse blood were removed by acetonitrile precipitation. The verification method was established in accordance with the US Food and Drug Administration (FDA) bioanalytical method validation guidelines. In the concentration range of 1–1000 ng/mL, the hapepunine in the mouse blood was linear (r2 > 0.995), and the lower limit of quantification was 1.0 ng/mL. In the mouse blood, the intra-day precision coefficient of variation (CV) was less than 12%, the inter-day precision CV was less than 14%. The accuracy ranged from 91.7% to 109.3%. The average recovery was higher than 76.7%, and the matrix effect was between 86.0% and 106.4%. The UPLC–MS/MS method was sensitive, rapid, and selective and was successfully applied to the pharmacokinetic study of hapepunine in mice. The absolute bioavailability of hapepunine was 22.0%.
EN
The aim of this study was to establish a rapid, sensitive, and selective ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method to quantify the concentrations of licochalcone A and applicate the technique to its pharmacokinetic study. Analytes were separated on an UPLC ethylene bridged hybrid (BEH) C18 column (2.1 mm × 50 mm, 1.7 μm). The mobile phase was consisted of acetontrile and 0.1% formic acid with a flow rate of 0.4 mL/min in a gradient elution mode. Multiple-reaction monitoring (MRM) was carried out in a negative mode for licochalcone A (m/z 337.2 → 119.7) and the internal standard (IS) (m/z 609.0 → 300.9). The linearity of licochalcone A was great from 0.53 to 530 ng/mL. The lower limit of quantification and the lower limit of detection were 0.53 ng/mL and 0.26 ng/mL, respectively. The intra-day precision was less than 14%, and the inter-day precision was no more than 11%. The accuracy was from 91.5% to 113.9%, the recovery was over 90.5%, and the matrix effect was between 84.5% and 89.7%. The results of stability were in an acceptable range. The bioavailability was only 3.3%, exhibiting poor absorption. The developed method was successfully applicable for determining the concentrations of licochalcone A and its pharmacokinetic study.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.