Environmental sound classification has received more attention in recent years. Analysis of environmental sounds is difficult because of its unstructured nature. However, the presence of strong spectro-temporal patterns makes the classification possible. Since LSTM neural networks are efficient at learning temporal dependencies we propose and examine a LSTM model for urban sound classification. The model is trained on magnitude mel-spectrograms extracted from UrbanSound8K dataset audio. The proposed network is evaluated using 5-fold cross-validation and compared with the baseline CNN. It is shown that the LSTM model outperforms a set of existing solutions and is more accurate and confident than the CNN.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.