Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Recent data of a complex solar radio burst type II is analyzed and reviewed. The monitoring of solar radio burst was done by using the Compact Astronomical Low cost, Low frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) from BLEIN 7 meter dish telescope at ETH, Zurich in frequency range of 25 until 1000 MHz. During the inspection of the X-ray spectrum, we observed that the C3-category flare was caused by a filament of magnetism, which rose up and erupted between 0400 and 0600 UT. This occurred three hours before the signature of solar radio burst type II. There are some of the material in the filament fell back to the sun, causing a flash of X-rays where it hit the Sun surface. This is a Hydra Flare which occurred without sunspots. On the basis of these results, we suggest that a single shock in the leading edge of the CME could be the source of the multiple type II bursts and support the notion that the CME nose and the CME-streamer interaction are the two main mechanisms able to generate the bursts.
EN
A short term variation of solar flare in nine months (January 2010 to September 2010) is presented. This paper review and analyze the correlation between radio flux strength measurement and solar flare in the X-ray region. The radio flux measurement data were taken from the National Research Council; Ottawa while hard X-ray emission observed by Royal Observatory of Belgium. The overall range of solar radio flux recorded in this study ranging from 68 x 10-22 Wm-2Hz-1 to 96 x 10-22 Wm-2Hz-1. As there was no class of an X of solar flare reported at all in this study, we can confirm that there are no major effects that happened on Earth and outer space such as Coronal Mass Ejections (CMEs) and solar storms. We concluded that the Sun shows a very minimum activity towards 24th solar cycle.
EN
The present article is an attempt to analyze the solar burst Type II observations based on solar flare and Coronal Mass Ejections (CMEs) events. We choose an intriguing type II radio burst with a velocity of 1193 kms-1 that occurred on 2012 November 13 at 2:04:20 UT. In this case, the study of solar radio burst type III is of paramount importance because of the fact that it helps to gain an insight of generation mechanisms of solar flare and Coronal Mass Ejections (CMEs) phenomena. Here, we have got a reasonably clear idea of the various forms under which the type III continuum emission may appear and potentially form a type II burst. However, in this case, the Type II solar burst only successfully forms a fundamental structure within the first few minute period, but broken suddenly before evolve a harmonic structure. This phenomenon is very interesting to be tackled and study. How the burst suddenly broken is still ongoing research seems the event is very rare and hard to be proved. There are a few questions that cause this unique situation which related to: (i) the intensity and duration of type III burst which also related to the classification of solar flare (ii) the probabilities CMEs to occur during that time and also the factor of the total amount of massive burst that exploded, Thus, we can conclude that the solar burst type III event still tells us an enigmatic characteristic from time to time due to the relationship of energetic particles and streams of particles with coronal magnetic fields and the pattern of Sun activity due to the 24th solar cycle. It might an interesting to study in detail the main factor that caused the Type II solar burst broken. Indirectly, it might because of the very intense of solar flares that make the percentage of energy of solar flare become more dominant rather than the acceleration of particles through the Coronal Mass Ejections. Thus, we realize that the potential energy during this event is higher than the kinetic energy of the particles.
EN
In the present work, we will highlight the solar observation during 15th April 2012, solar filament eruption which is accompanied by an intense and gradual Coronal Mass Ejections (CMEs) The explosion of CMEs was observed at 2:12:06 UT and also can be observed by the Solar Dynamics Observatory (SDO) with an Active Region AR1458 is crackling with C-class solar flares. The solar flare class B3 and C2 were observed beginning 2241 UT and 0142 UT. The event is considered as second largest CMEs been detected since five years. Although the solar activity within a few days is considered quite low and there are no proton events were observed at geosynchronous orbit., the is still an unexpected explosion of CMEs can be occurred. The radio flux number (10.7 cm) exceeds 102 with the number of sunspot and area of sunspot increased to 77 and 270. The velocity of CMEs was calculated based on the LASCO2 data. From the results, it is clearly seen that the range of the velocity is between 200 kms-1 to 2000 kms-1. This wide of range proved that the mechanism of the CMEs is a gradual process. The explosion of CMEs velocity is located from 80º - 255º from North of the Sun. We can then conclude that currently, the rearrangement of the magnetic field, and solar flares may result in the formation of a shock that accelerates particles ahead of the CMEs loop and an active region play an important character in this event.
EN
The main feature of solar radio type II, III and IV burst is outlined. In this event there are three combinations of bursts that related to the solar flare phenomenon on 6th July 2012. This event is one of good example to observe how far the influence of type II burst could impact the formation of type IV burst and III solar bursts. At first stage, it was observed that a sub-type of H burst form within 2 minutes before type IV solar burst form. The type IV burst is due to the eruption of active region AR 1515 with a fine structure (FS). We used a Blein CALLISTO data in this case. Further analysis also showed that the total energy of the burst are in the range of 4.875 × 10-25 J to 8.48 × 10-25 J and plasma frequency is equal to 1.24 × 104 Hz. Therefore, we could say that in this case, before the solar burst type III occurred, the ejection of CMEs already ejected.
EN
Using data from a BLEIN Callisto site, we aim to provide a comprehensive description of the synopsis formation and dynamics of a a single solar burst type III and IV event due to active region AR1890. This eruption has started since 14:15 UT with a formation of type III solar burst. To investigate the importance of the role of type III solar burst can potentially form a type IV solar burst, the literature review of both bursts is outlined in detailed. The orientation and position of AR1890 make the explosion of a class C-solar flare is not directly to the Earth. Nevertheless, it is clear that the interactions of others sunspots such as AR1893,AR1895,AR1896, AR1897 and AR1898 should be studied in detail to understand what makes the type III burst formed before the type IV solar burst.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.