The dynamic behavior of a typical viscoelastic material in wide ranges of frequency and tem- perature is characterized. A four-parameter fractional derivative model was considered in the frequency domain along with the Arrhenius and WLF models, also for including tempera- ture as a source of variation. A Bayesian framework is adopted and inferences on parameters governing the model quantities of interest are based on samples from posterior distributions obtained by Monte Carlo Markov Chain (MCMC) methods. Posterior predictive checks were conducted to ensure the goodness-of-fit of the model. Based on the results we argue that the Bayesian framework allows more complete and suitable inference about dynamic properties of typical viscoelastic materials, as required for broad and sound vibration control actions.
Viscoelastic materials are used to reduce vibrations in mechanical systems due to their con- trol efficacy. Considering that the dynamic behavior of those materials may be described by means of complex moduli, and experimental data may present ucertainties, an alternative is to use probabilistic methods, especially the Bayesian inference approach. By that approach, probability distribution functions are obtained for parameters of a model which describes the behavior of a given material. The present work employs a viscoelastic material modeled by the Bayesian approach in two vibration control actions, namely: a) use of vibration isolators; b) use of dynamic neutralizers. Transmissibility and receptance curves are displayed as well as dimensions of the control devices. Performance predictions are carried out in both cases. It is shown that the Bayesian approach can favourably reflect the presence of the uncertain- ties and advance their effects. Thus, more information can be provided for the designer of viscoelastic vibration control devices to anticipate eventual corrective measures.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.