Copper oxide nanoparticles have been synthesized by the chemical liquid deposition method and characterized by means of X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The XRD and SEM results showed that the particle size was between 50 nm and 70 nm. Ammonium perchlorate (AP)-CuO nanostructures have been prepared by ex-situ mixing of AP and CuO nanoparticles, while AP/CuO nanocomposites have been obtained by in-situ growth of nano CuO on the surface of AP. The effect of the nanoparticles on the thermal decomposition of AP has been examined by differential scanning calorimetery (DSC) and thermogravimetric analysis (TGA) methods. The results showed that the ex-situ prepared nanoparticles had better catalytic activity than the in-situ prepared ones. The effect of the synthesized nanoparticles on the thermal decomposition of AP in experiments with a AP to CuO ratio of 98:2 was as follows: with the ex-situ prepared experiments, the decomposition temperature decreased from 428 °C to 348 °C and the heat released increased from 344 J·g−1 to 1432 J·g−1, while those with the in-situ prepared samples exhibited 341 °C and 1317 J·g−1, respectively.
Helical piles are environmental friendly and economical deep foundations that due to environmental considerations are excellent additions to the variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that carried out by Frustum Confining Vessel (FCV). FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. Results indicate the helical piles behavior essentially depends on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.