Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The objective of the research, presented in this paper, was to demonstrate the superiority of the hard facing as the revitalization technology of various damaged machine parts. The analysis of the two different revitalization methods of the damaged machine parts is presented – the replacement of the damaged part by the new – spare part and reparation by hard facing. The comparison is done on the example of hard facing and replacing of damaged loader's teeth. The paper presents a method for calculating costs of the two revitalization technologies based on their profitability and their comparison. That method could be applied for similar calculations for any machine part, with smallest or no adjustments. The paper presents a verification of advantage of applying the hard facing as the machine parts reparatory technology with respect to the other revitalization technology. The savings realized by application of hard facing reparation of the loader's teeth reach 73.5 % for one set of teeth and 82.40per annum of the costs for purchasing the new spare parts. The analysis was conducted under an assumption that organization of the maintenance function is at the exceptionally high level so that the purchasing of the new part/repairing of the damaged one is always done in time. This idealized approach was adopted since in that way one obtains the least economic effects of the reparatory technology application with respect to replacing the part with the spare one. In any other case the economic effects would be significantly higher, namely even more positive in favor of the hard facing revitalization technology.
2
Content available remote An estimation of the high-pressure pipe residual life
EN
The paper presents an estimation of the residual life of the power plant high-pressure pipe, which has been in exploitation for years. A crack was noticed in the pipe, thus it was necessary to estimate the pipe material residual life until its eventual failure. The combined methodology for residual life estimation, which consists of experimental and numerical investigations, was developed. The samples were taken directly from the real high pressure pipe and material properties were determined experimentally, both at room and elevated (operational) temperature. The experimental results also served for the verification of the developed numerical methodologies. The FEM and the X-FEM methods were used for the residual life numerical estimation of the high pressure pipe. The stress and strain fields, used for the estimate, were obtained by application of the Paris' law. The final verification of numerical results was realized by comparing the critical crack length to the experimentally obtained value.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.