Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Celem artykułu jest przedstawienie zjawiska rozpraszania energii podczas walcowania. Podane są zasady teoretyczne, jak też opis badań plastometrycznych, dynamiczny model materiału, teoria schematów oraz procedura ich tworzenia. Przedmiotem badań są próbki stali 9Cr, dla których wykonano badania własności plastometrycznych w plastometrze Gleeble. Badania zostały wykonane przy różnych odkształceniach (0,2; 0,5; 0,7), szybkościach odkształcania (0,1; 1; 10) i w temperaturze w zakresie 800–1260°C. Rozpraszanie energii jest charakteryzowane przez wielkość bezwymiarową, znaną jako skuteczność rozpraszania energii η, będącą głównym elementem dynamicznego modelu materiału – DMM. DMM określa obszary niestabilności i skupia się głównie na lokalizacji dynamicznej rekrystalizacji. Przetworzono dane otrzymane z plastometru, opisano procedury i obliczenia, prowadzące do utworzenia schematu rozpraszania i obróbki. Poza tym wskazano na możliwość użycia przybliżonych danych do szerszego zakresu temperatury i szybkości odkształcania. Zmierzone wartości zostały wykorzystane do obliczeń pozwalających na określenie parametru wrażliwości odkształcenia plastycznego m, wynikowej skuteczności rozpraszania η, jak również określenia parametru niestabilności plastycznej ξ. Na podstawie tych wielkości utworzono schematy rozpraszania 2D lub 3D oraz wynikowe schematy obróbki. Schematy te zostały wykonane w programie Golden Surfer. Ze względu na jednostajność uzyskanych wyników, zarówno doświadczalnych, jak i ekstrapolowanych, uzyskane ostateczne wielkości rozpraszania nie wykazują żadnych szczególnych obszarów, mogących wskazywać na naruszone rozpraszanie w zakresie stosowanych temperatur i szybkości odkształcania.
EN
The article is aimed at determination of energy dissipation during rolling. The theoretical principles are given, together with description of plastometric tests, dynamic material model, map theory and procedure for their creation. The subject of research are samples of 9Cr steel for which plastometric pressure tests on a Gleeble plastometer have been conducted. The tests were performed at different deformations (0.2; 0.5; 0.7) at strain rates (0.1; 1; 10) and temperatures of 800–1260°C. Energy dissipation is characterized by a dimensionless quantity, known as the efficiency of energy dissipation η, which is the main element of the dynamic material model - DMM. The DMM determines the regions of instability and is mainly focused on the localization of the dynamic recrystallization. Here the raw data from the plastometer are processed and the procedures and calculations leading to the compilation of dissipation and process map are described. Also the steps from the approximated data for a wider range of temperature and strain rate are mentioned. The measured values were used for calculations leading to the determination of the sensitivity parameter of the plastic deformation m, the resulting efficiency of dissipation η, but also to determination of the parameter of plastic instability ξ. From these figures the 2D or 3D dissipation maps and resulting process maps were compiled. The resulting maps were created in the Golden Surfer software. Because of the monotony of the results obtained, both raw and extrapolated, our final dissipation figures do not show any specific domains that would indicate impaired dissipation over the range of used temperatures and strain rate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.