As nonlinear optimization techniques are computationally expensive, their usage in the real-time era is constrained. So this is the main challenge for researchers to develop a fast algorithm that is used in real-time computations. This work proposes a fast nonlinear model predictive control approach based on particle swarm optimization for nonlinear optimization with constraints. The suggested algorithm divide and conquer technique improves computing speed and disturbance rejection capability, demonstrating its suitability for real-time applications. The performance of this approach under constraints is validated using a highly nonlinear fast and dynamic real-time inverted pendulum system. The solution presented through work is computationally feasible for smaller sampling times and it gives promising results compared to the state of art PSO algorithm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.