Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study aimed to determine the adsorption capacity of rhodamine-B (Rh-B) and methylene blue (MB) on Mg/Cr-Ni adsorbents. The Mg/Cr-Ni adsorbent was synthesized by the coprecipitation method. The results of the characterization of Mg/Cr-Ni using XRD analysis showed the formation of oxides at an angle of 2θ = 31.726°, 33°, and 45.44°. The surface area of Mg/Cr-Ni is 23.139 m2/g. The adsorption capacity test for Mg/Cr-Ni for Rh-B and MB were 85.470 mg/g and 166.667 mg/g, respectively. The adsorption kinetics model followed the pseudo second order (PSO). The adsorption process is endothermic and occurs spontaneously at any temperature. Mg/CrNi showed stability in the adsorption process of Rh-B and MB for 5 regeneration cycles.
EN
The development of studies on layered double hydroxide (LDH) material as a photocatalyst for the degradation of dye pollutants continues to increase. LDH is an anionic clay, which is a natural or synthetic mixed metal hydroxide. Pristine LDH is written as M2+/M3+ LDH, (M is metal ion). This study prepared pristine Mg/Al LDH and Zn/Al LDH composited with metal oxide TiO2 and ZnO, respectively. Composite is denoted by M2+/M3+ -metal oxide. The coprecipitation method used was accompanied by calcination of the composite at a temperature 300 °C that was not high. The prepared composites were morphologically characterized by SEM. The materials that had been used until the fifth cycle of regeneration were characterized by XRD and FTIR which still indicated the presence of LDH-metal oxide composite structure. The materials degraded cationic dyes namely rhodamine-B (RhB) and methylene blue (MB). RhB degraded better than MB by pristine LDH and composites. The percent degradation of RhB for pristine Mg/Al LDH, composites Mg/Al-TiO2 and Mg/Al-ZnO were 53.1%, 59.8%, 62.8%, respectively. The percent RhB degradation for pristine Zn/Al LDH, composites Zn/Al-TiO2 and Zn/Al-ZnO were 51.4%, 58.5%, 58.9%, respectively. The percentage of degradation indicates that the LDH-metal oxide composite has succeeded in increasing the photodegradation catalytic ability and the regeneration ability of LDH pristine.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.