Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, tetrahydrofurfuryl-functionalized polystyrene nanoparticles (TFPNs) were evaluated as collectors in low-rank coal flotation. A series of TFPNs were prepared by immobilizing tetrahydrofurfuryl groups onto the surface of polystyrene nanoparticles (PNs), and further characterized in terms of their size, shape, surface charge and surface functionalization group concentration (SFGC). The coal flotation performance using TFPNs was compared to that using PNs and diesel oil (DO). The interaction mechanisms between TFPNs and low-rank coal were also discussed. The results show that TFPNs gave higher recovery than that given by PNs and DO. Smaller TFPNs were more effective flotation collectors. The recovery of TFPNs increased firstly and then decreased with SFGC. TFPNs can specifically deposit onto the low-rank coal particles with the hydrogen bonding function between tetrahydrofurfuryl groups and oxygen-containing functional groups, and promote low-rank coal flotation by increasing the hydrophobicity and roughness of coal particle surface with the adsorbed TFPNs. It was demonstrated that TFPNs introduced a new class of collectors for low rank coal flotation.
EN
Low-rank coals are difficult to float using common hydrocarbon oily collectors, such as dodecane and diesel. In this investigation, a mixture of dodecane and n-valeraldehyde was used as a collector to enhance low-rank coal flotation. The changes of the contact angle and surface functional groups of low-rank coal were measured before and after different collectors’ adsorption to indicate its absorption mechanism. Surface tension of different collectors was also measured to identify its spreading performance. The results showed that the flotation performance using the mixture as a collector was much better than that using dodecane or n-valeraldehyde solely. When used the mixture of dodecane and n-valeraldehyde as collector, dodecane primarily covers the hydrophobic sites while n-valeraldehyde primarily covered the hydrophilic sites by hydrogen bond promoting adsorption of dodecane at these sites. There existed synergistic effect between dodecane and n-valeraldehyde. Additionally, n-valeraldehyde can reduce the surface tensions to improve the spreading performance of mixed collector on low-rank coal surface. The improvement both in adsorption and spreading was responsible for the enhancement of low-rank coal flotation by using the mixture.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.