Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A Modal Interface Theory for Component-based Design
EN
This paper presents the modal interface theory, a unification of interface automata and modal specifications, two radically dissimilar models for interface theories. Interface automata is a game-basedmodel, which allows the designer to express assumptions on the environment and which uses an optimistic view of composition: two components can be composed if there is an environment where they can work together. Modal specifications are a language theoretic account of a fragment of the modal mu-calculus logic with a rich composition algebra which meets certain methodological requirements but which does not allow the environment and the component to be distinguished. The present paper contributes a more thorough unification of the two theories by correcting a first attempt in this direction by Larsen et al., drawing a complete picture of the modal interface algebra, and pushing the comparison between interface automata, modal automata and modal interfaces even further. The work reported here is based on earlier work presented in [41] and [42].
EN
In this paper, we introduce a new model for the representation of distributed asynchronous implementations of synchronous specifications. The model covers classical implementations, where a notion of global synchronization is preserved by means of signaling, and globally asynchronous, locally synchronous (GALS) implementations where the global clock is removed. The new model offers a unified framework for reasoning about two essential correctness properties of an implementation: the preservation of semantics and the absence of deadlocks. We use it to derive criteria ensuring the correct deployment of synchronous specifications over GALS architectures. As the model captures the internal concurrency of the synchronous specification, our criteria support implementations that are less constrained and more efficient than existing ones. Our work also reveals strong ties between abstract semantics-preservation properties and more operational ones like the absence of deadlocks.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.