Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A full energy chain analysis (FENCH) or a life cycle analysis (LCA) is indeed essential in making any decision on both minimal greenhouse gas (GHG) emissions and the energy content in various commodities. In this article, the energy Input-Output Analysis (IOA) approach is investigated to determine the factors for the total greenhouse gas emission and total energy content, and it deems the elimination of the boundary constraints existing in the Process Chain Analysis (PCA) approach to be practical to. This study, aims to identify the factors in embedded energy and embedded greenhouse gas (GHG) total values derived from the total Thai economic sectors of 180 in various commodities productions. The previous outdated IOA is enhanced in the study by revising the elements of sectoral energy consumption in the power sector, which is later found to be influential and significant to all other economic sectors. In addition, the 2005 sectoral energy consumption is used to show individual energy consumption, whereas the 2010 Input-Output (I-O) table, most timely data, is used to show the economic structure. Furthermore, the study uses a report of Thai electric power to revise the data of 2005 fuel mix in the power sector in order to obtain the 2010 and 2015 fuel mix. The reason of such revision is that the changes of fuel mix in the power sector are influential towards the factors in both total energy content and total greenhouse (GHG) emission. Hence, the 2015 electricity-fuel mix is taken to present the above-mentioned factors.
EN
The aim of this study is to analyze the modeling and forecasting the GHG emission of energy consumption in manufacturing sectors. The scope of the study is to analyse energy consumption and forecasting GHG emission of energy consumption for the next 10 years (2016-2025) and 25 years (2016-2040) by using ARIMAX model from the Input-output table of Thailand. The result shows that iron and steel has the highest value of energy consumption and followed by cement, fluorite, air transport, road freight transport, hotels and places of loading, coal and lignite, petrochemical products, other manufacturing, road passenger transport, respectively. The prediction results show that these models are effective in forecasting by measured by using RMSE, MAE, and MAPE. The results forecast of each model is as follows: 1) Model 1 (2,1,1) shows that GHG emission will be increasing steadily and increasing at 25.17% by the year 2025 in comparison to 2016. 2) Model 2 (2,1,2) shows that GHG emission will be rising steadily and increasing at 41.51% by the year 2040 in comparison to 2016.
EN
This study aims to analyze the forecasting of energy consumption in the Construction and Materials sectors. The scope of the study covers the forecasting periods of energy consumption for the next 10 years, 2017–2026, 20 years, 2017–2036, and 30 years, 2017–2046, by using ARIMAX Model. The prediction results show that these models are effective in the forecast measured by RMSE, MAE, and MAPE. The results show that from the first model (2,1,1), which predicted the duration of 10 years, 2017–2026, indicates that Thailand has increased an energy consumption rate with the average of 18.09%, while the second model (2,1,2) with the prediction of 20 years, 2017–2036, Thailand arises its energy consumption up to 37.32%. In addition, the third model (2,1,3) predicted the duration of 30 years from 2017 to 2046, and it has found that Thailand increases its energy consumption up to 49.72%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.