Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Hydrological modeling predicts flood discharge and diminishes the danger by minimizing the environmental damages downstream. This study aimed to investigate the application of the ATHYS Models platform for simulating the rainfall-runoff relationship in Oued Laou Watershed (940 km2 ). The study area is characterized by strong storms associated with the highest rainfall in Morocco, as well as renowned for its regular water supply and historical flooding; for these reasons, it is classified as a vulnerable area during a rainfall event. The models of the ATHYS platform have been implemented in continuous time during (2004–2012), and in four hourly rainfall extremes recorded in March 2018 at the Kodiat Khorireen station. The VICAIR model was used to visualize, analyze and spatially adjust the input data in raster format (land use, soil numerical map, slope, and flow direction). The VISHYR model, on the other hand, was used for corrections, calculations, management, and visualization of local hydro-climatic data in the FTS63 format. Under the MERCEDES model, the combination of the Soil Conservation Service (SCS) production function and the Lag and Route (L&R) transfer function has produced satisfactory results for continuous simulation periods and for the extreme scenarios. The modeling of the flow process in the Oued Laou by the ATHYS platform produced a reasonable performance with an average NSE of 0.70, R2 of 0.73, PBIAS of 13% and RMSE of 0.46. The research results reveal that the storage parameters, soil type, land use, and vegetation are the most important factors affecting the sensitivity of the hydrological response in the Oued Laou watershed. Moreover, the results indicate that the MERCEDES model is an appropriate tool for modeling floods and flow volumes associated with specific rain events and could be used by managers and decision-makers as a tool for flood forecasting in Morocco.
EN
The typical Mediterranean climate is marked at certain times of the year by sudden torrential rains causing high water flows, which leads to heavy flooding and hydroclimatic fluctuations due to a semi-arid climate. This explains the need for hydrological modeling for water resource management in these contexts. This work concerns the hydrological modeling of the Azzaba catchment area in Haut-Sebou “Morocco”. In the first part of this work, a bibliographic synthesis was carried out to characterize certain factors (physical, geological and climatic), and a hydrological study was carried out by processing rainfall and hydrometric data from the considered time periods. Ultimately, the use of the “ATHYS” platform is beginning to reproduce the flows at the Azzaba outlet. This model is really applicable in the semi-arid context based on several studies carried out on these contexts, since it has to consider the chronological sequence of phenomena on one hand and the influence of the climatic and physicalhydrogeological parameters of the basin (humidity and soil exchange) on the other. Several criteria were used in this study to estimate the model performance; the most common is Nash-Sutcliffe. After observation and analysis of the overall results, it can be concluded that the model reproduces flows in the Azzaba River watershed well, especially in event mode (mean Nash-Sutcliffe value of 0.71). The use of a historical meteorological time series to simulate flow using a daily time step gives average results with a Nash of 0.50, which strengthens the reliability of the ATHYS platform in the Mediterranean climate area.
EN
This study evaluated the Soil and Water Assessment Tool (SWAT) model performance for modeling the portioning of rainfall in the Laou watershed (area: 940 km2) that extended over two different climatic settings in Morocco, (the Mediterranean sub-humid and the semi-arid). This research also investigated the significant parameters that affect the stream flow simulation. SWAT model was constructed during the period from 2004 to 2011. The modeled stream flow data was manually calibrated using flow gauges daily from 2004 to 2008 and validated for the volumetric flows from 2009 to 2011. SWAT model results indicate that 60% of the stream is provided by the base flow. The sensitivity analysis showed that out of 28 parameters, only 6 revealed meaningful effects on the flow simulation (CN2, ESCO, SOL_AWC, ALPHA_BF, CH_N2, CH_k2) and have the most significant influence. The model proved to be very sensitive to the base flow. Furthermore our outcome indicates that SWAT can successfully replicate the daily stream flows in Laou watershed with Nash-Sutcliffe (NSE) coefficients in the range of 0.76–0.84, R2 of 0.74–0.82, RSR of 0.52–0.41 and PBIS of 12.24–8.93 respectively. In addition SWAT was found to be suitable for both climatic regions in Laou watershed. These results reinforced the multi-functionality and reliability of SWAT as a hydrological model and a relevant tool for water resources management and controls.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.