Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
All mechanical systems behave nonlinearly to a certain extent since there are always reasons for nonlinearities, such as friction and slip effects, in the actual structures. It is important to detect and identify the nonlinearity due to friction and contact in order to investigate their effect on the global behavior of the workpiece-fixture system. That is a prerequisite for modeling the dynamic contact behavior at the interface between the workpiece and clamping elements. In this research, the workpiece-fixture system was excited with a shaker using the swept sine signal. The nonlinearities could be detected by comparing and analyzing the frequency responses of the structures in Bode plots. However, the nonlinearities behaved differently at various frequencies within the observation range. Different mechanisms such as nonlinear stiffness and damping, micro-slip friction, are responsible for that. Then the nonlinear contact behavior at the clamping positions was successfully identified by means of the Hilbert transform. In addition, the clamping force directly influenced the nonlinear stiffness of the workpiece-fixture system.
EN
The prediction of component properties from the Additive manufacturing (AM) process poses a challenge. Therefore, this paper presents the development of a novel machine data (G-Code) based procedure as well as its programming implementation of a process simulation in ANSYS Mechanical for the fused layer modelling (FLM) process. For this purpose, an investigation of additively produced components with varying parameters made of polylactic acid (PLA) is carried out and simulated by means of the developed method. Application of the developed method makes it possible to predict the thermally induced distortion of PLA-Parts based on the machine data from the FLM process before production.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.