The current practice of reconstruction of oxidized turbine parts (due to hot corrosion) using arc welding methods facilitates restoration of the nominal shapes and dimensions, as well as other attributes and features. Intense development of 3D additive methods and techniques contributes to the repair/modification of different parts including gas turbine (GT) hardware. The article proves the viability of the concept of using a robotized additive arc welding metal active gas (MAG) process to repair and modify gas turbine diaphragms using different filler materials from the substrate. The industrialized robotic additive process (hybrid repair) shows that very good results were achieved if the diaphragm is cast of nickel-iron and the filler material for welding the passes is austenitic stainless steel (for instance 308 LSi). This is one of the novelties introduced to the repair process that was granted a patent (US11148235B2) and is already implemented in General Electric Service Centers.
3D concrete printing (3DCP) technology is a rapidly developing and promising technique for creating concrete structures. One of the main challenges of the 3DCP technology is the method of reinforcement, which should be integrated with the automated printing process, while maintaining the best mechanical properties important for the strength of the structure. The main reason to undertake the subject is low degree of automation in construction industry, which results in high cost of human labour, as well as high rate of accidents in process. The article proposes a technology for automatic reinforcement of concrete structures with glass fibres and epoxy resin. Maximum bending force tests of beams reinforced with the proposed method were carried out and compared with beams reinforced with commonly used methods. Although not being a article focused on DIC analysis, few images were presented to compare behaviour of non-reinforced beam with automatically reinforced one and to show cracking propagation of a chosen automatically reinforced beam. The proposed method of reinforcement in the 3DCP process enables full automation and constructions with high bending strength, simultaneously reducing the level of risk involved in conventional construction industry.
The article presents the method of identifying surface damage by measuring changes in resistance in graphite-based sensing skin. The research focused on analysis of conductivity anomalies caused by surface damage. Sensitivity maps obtained with Finite Element Method (FEM) in conjunction with the analytical damage model were used to build the coating evaluation algorithm. The experiment confirmed the ability of this method to identify a single elliptical-shape damage. Eight electrodes were enough to locate the damage that covered about 0.1‰ of the examined area. The proposed algorithm can prove useful in simple applications for surface condition monitoring. It can be implemented wherever it is possible to apply a thin layer of conductor to a non-conductive surface.
3D scanning measurements are gaining popularity every year. Quick inspections on already captured point clouds are easy to prepare with the use of modern software and machine learning. To achieve repeatability and accuracy, some surface and measurement issues should be considered and resolved before the inspection. Large numbers of manufacturing scans are not intended for manual correction. This article is a case study of a small surface inspection of a turbine guide vane based on 3D scans. Small surface errors cannot be neglected as their incorrect inspection can result in serious faults in the final product. Contour recognition and deletion seem to be a rational method for making a scan inspection with the same level of accuracy as we have now for CMM machines. The main reason why a scan inspection can be difficult is that the CAD source model can be slightly different from the inspected part. Not all details are always included, and small chamfers and blends can be added during the production process, based on manufacturing standards and best practices. This problem does not occur during a CMM (coordinate measuring machine) inspection, but it may occur in a general 3D scanning inspection.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.