Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigates the properties of the brain electrical activity from different recording regions and physiological states for seizure detection. Neurophysiologists will find the work useful in the timely and accurate detection of epileptic seizures of their patients. We explored the best way to detect meaningful patterns from an epileptic Electroencephalogram (EEG). Signals used in this work are 23.6 s segments of 100 single channel surface EEG recordings collected with the sampling rate of 173.61 Hz. The recorded signals are from five healthy volunteers with eyes closed and eyes open, and intracranial EEG recordings from five epilepsy patients during the seizure-free interval as well as epileptic seizures. Feature engineering was done using; i) feature extraction of each EEG wave in time, frequency and time-frequency domains via Butterworth filter, Fourier Transform and Wavelet Transform respectively and, ii) feature selection with T-test, and Sequential Forward Floating Selection (SFFS). SVM and KNN learning algorithms were applied to classify preprocessed EEG signal. Performance comparison was based on Accuracy, Sensitivity and Specificity. Our experiments showed that SVM has a slight edge over KNN.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.