Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
For mining biomedical information identifying names is the prime task. Complex and uncertain naming styles of biomedical entities are the major setbackshere. Thus, state-of-the-art accuracy of biomedical name identification is reasonably inferior compared to general domain. This study includes Machine Learning and Deep Learning techniques to recognize names from biomedical corpus. In supervised classification, a classifier is built by finding required statistics from training corpus. Accordingly, performance of the system is primarily dependent on quantity and quality of training corpus. But manually preparing a large training dataset with enriched feature samples is laboriousand time-taking. Therefore, various techniques were adopted in the literature tomake effective use of raw corpora. We have incorporated a novel Cluster Merging technique and Attention Mechanism with BERT embedding for boosting Machine Learning and Deep Learning classifiers respectively. The suggested results outpour that profound techniques are competent and delineate signifying improvement over surviving methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.