Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 19

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Metallic materials are important for load-bearing bone implants. The osteointegration of these implants can be improved by appropriate surface modifications. Therefore, we present here a study of the cell growth on titanium surfaces modified with films created from gold microparticles. These particles in the form of microplates or polyhedral microcrystals were deposited on titanium plates from ethanol solutions, dried and annealed with a hydrogen flame. Some samples were additionally modified by polyethylene imine. The materials engendered from these modifications were used to investigate the adhesion and growth of human osteoblast-like MG-63 cells on these surfaces in the DMEM medium with 10% of fetal bovine serum. One day after seeding, the highest number of initially adhered cells was found on the surfaces modified by both types of gold microparticles. This trend was the same three and seven days after seeding. The numbers of cells on pure Ti and Ti modified only with gold particles were significantly higher than on samples which were modified with polyethylene imine. The cell spreading areas projected on the materials were significantly larger in cells on the samples with polyethylene imine modification. However, the shape of these cells was mostly rounded or star-like with thin and long protrusions, while on the materials without polyethylene imine, it was mostly polygonal. The cell proliferation activity was estimated from XTT test, based on the activity of mitochondrial enzymes. This test showed that the proliferation activities of osteoblast-like MG-63 cells of the 3rd and 7th days of the experiment were more pronounced on the samples modified only by gold microparticles. Immunofluorescence showed that the focal adhesion plaques containing vinculin and the fibers containing β-actin were most apparent, more numerous and more brightly stained in cells on Ti modified by gold microplates and gold polyhedral microcrystals, especially in comparison with the corresponding samples modified with polyethylene imine (Fig. 1). Thus, it can be concluded that the modification of titanium samples by both types of gold microparticles enhanced the adhesion and growth of MG 63 cells.
EN
Metallic materials are indispensable for construction of surgical implants, particularly those designed for load-bearing application, such as the bone-anchoring parts of big joint replacements. For good osteointegration, long-term function, durability and also mechanical and chemical resistance of the implant, the physical and chemical properties of the material surface are of a great importance. These properties can be favorably influenced by coating the bone-anchoring parts of the implants with appropriate biocompatible and bioactive films. Therefore, in this study, we have investigated the adhesion and growth of human osteoblast-like MG 63 cells in cultures on titanium substrates coated with films made of gold microparticles and/or poly(ethylene imine) (PEI). Gold microparticles were chosen for good biocompatibility of gold and absence of its cytotoxicity, which has been proved by numerous studies performed in vitro and in vivo [1,2]. When deposited on the material surface, these microparticles provide this surface with microstructure, which has been reported to enhance the osteogenic differentiation of bone-derived cells. On the other hand, the material surface microroughness has dual effect on the cell adhesion, spreading and proliferation - some studies reported the enhancement, other the reduction of these events (for a review, see [3,4]). This suggests that not only the size of the microscale irregularities, but also their shape should be taken into account. Therefore, in our study, gold microparticles were used in the form of plates or polyhedral crystals [5]. These microparticles were deposited on square samples of Ti (1x1 cm, thickness 1 mm) and annealed with a hydrogen flame. As for PEI, this polymer has been used as precursor base layer for further functionalization of metallic substrates, particularly with polyelectrolyte multilayer films [6] or biomolecules such as gelatin, hyaluronan or chitosan [7,8]. Other reason for the PEI deposition was creation of an intermediate layer which would compensate the differences in mechanical properties (e.g., hardness, toughness, specific weight) between a metallic implant and bone tissue. PEI was deposited either on pure or on gold microparticle-coated Ti samples. The materials were sterilized with 70% ethanol (1 hour), inserted into 24-well polystyrene plates (well diameter 1.5 cm; TPP, Switzerland) and seeded with human osteoblast-like MG 63 cells (30 000 cells/well, i.e. 17 000 cells/cm2). Each well contained 1.5 ml of a medium DMEM with 10% of fetal bovine serum and 40 /jg/ml of gentamicin. On days 1, 3 and 7 after seeding, the cell number and morphology were evaluated. For evaluating the cell number, the cells were trypsinized and counted in Bürker hemocytometer. For evaluating the cell morphology, i.e. the cell shape and the size of cell spreading area, the cells were fixed with 70% ethanol (-20°C, 10 min) and stained with a combination of fluorescence dyes Texas Red C2-maleimide, which stains the cell membrane and cytoplasm, and Hoechst #33342, which stains the cell nuclei. The microphotographs of cells were taken using an Olympus IX 51 microscope equipped with a DP 70 digital camera, and the cell spreading area was measured on these pictures using a software Atlas (Tescan, Brno, Czech Rep.) One day after seeding, the highest number of initially adhered cells was found on the surface modified by gold polyhedral crystals. This trend was the same on days 3 and 7 after seeding (FIG.1,2). However, the cell number on Ti modified with gold plates was significantly lower than on Ti with polyhedral crystals. Nevertheless, the numbers of cells on Ti samples coated with gold microparticles without PEI were significantly higher than on PEI-coated samples. Also the cell spreading areas were significantly larger on the samples without PEI. The cells on the samples without PEI were mostly polygonal, while the cells on PEI-coated samples were of star-like appearance, i.e. with multiple long protrusions (FIG.2). This is in accordance with findings published by other authors, documenting cytotoxic effects of PEI, particularly that of a high molecular weight [6], which was also used in our study (m.w. 750 kDa). Nevertheless, this cytotoxicity was considerably reduced by further functionalization of PEI with biomolecules, such as gelatin, hyaluronan or chitosan [7,8]. Thus, it can be concluded that the modification of titanium plates by gold microparticles supported the adhesion and growth of MG 63 cells. In this context, the polyhedral crystals were more advantageous than plates. The effects of PEI coatings on cell behavior need further investigation.
EN
Low density polyethylene (LDPE) was modified by an Ar plasma discharge and then grafted with glycine (Gly), bovine serum albumin (BSA) or polyethylene glykol (PEG). Some plasma-treated samples and samples grafted with BSA were exposed to a suspension of colloidal carbon particles (C, BSA+C). Pristine LDPE and tissue culture polystyrene dishes (PSC) were used as control samples. The materials were seeded with rat aortic smooth muscle cells and incubated in a medium DMEM with 10% of fetal bovine serum. On day 1 after seeding, the cells on LDPE modified with plasma only, Gly, BSA and BSA+C adhered in similar numbers as on PSC, while the values on non-modified and PEG-modified samples were significantly lower. On day 5, the highest cell numbers were found again on LDPE with Gly, BSA and BSA+C. On day 7, the highest number of cells was found on LDPE modified only with plasma. The latter cells also dis-played the largest cell spreading area. The increased cell colonization was probably due to the formation of oxygen-containing chemical functional groups after plasma irradiation, and also due to positive effects of grafted Gly, BSA and BSA in combination with colloidal C particles.
EN
Viscose, dialdehyde cellulose and oxidized 6-car-boxycellulose with 2.1 or 6.6wt.% of –COOH groups were prepared. The materials were subsequently functionalized with arginine or chitosan. Both unmodified and biofunctionalized materials were seeded with vascular smooth muscle cells. The morphology of the adhered cells indicated that oxidized 6-carbo-xycellulose with 2.1% content of –COOH groups was the most appropriate of all tested materials for potential use in tissue engineering. The shape of the cells on this material was elongated, which demonstrates adequate adhesion and viability of the cells, while the morphology of the cells on other tested materials was spherical. Moreover, the stability of 6-carboxycellulo-se with 2.1wt.% of –COOH groups in the cell culture environment was optimal, with a tendency to degrade slowly with time. The highest stability was found on the viscose samples, whereas there was very low stability on oxidized 6-carboxycellulose with 6.6 wt. % of –COOH groups, and also on dialdehyde cellulose. Functionalization with arginine or chitosan increased the number of adhered cells on the materials, but not markedly. We did not obtain a significant elevation of the cell population densities with time on the tested samples. These results suggest the possibility of using a cellulose-based material in such tissue engineering applications, where high proliferation activity of cells is not convenient, e.g. reconstruction of the smooth mu-scle cell layer in bioartificial vascular replacements.
EN
Metal surfaces have become important over the last decade for potential surgical implants, and within this context we present here a study of the cell growth on modified gold surfaces. Gold films, deposited on glass plates and annealed with a hydrogen flame, were modified with four different carboranethiol derivatives: 1-(HS)-1,2-C2B10H11 (A), 1,2-(HS)2-1,2-C2B10H10 (B), 9,12-(HS)2-1,2-C2B10H10 (C) and 1,12-(HS)2-1,12- C2B10H10 (D). The materials engendered from these modifications were used to investigate the adhesion and growth of rat aortic smooth muscle cells cultured on these surfaces in a DMEM medium with 10% of fetal bovine serum. One day after seeding, the highest number of initially adhered cells was found on the surface of a bare gold film. However, three days after seeding, the number of cells on carboranethiol-modified gold samples B, C and D was significantly higher than the number on a bare gold film. After seven days, the number of cells on a bare gold film and on gold films modified with derivatives A, B and D was very similar, but the surface of a gold film modified with derivative C exhibited a significantly smaller number of cells. This may be explained by the exposure of the CH vertices of the carborane cluster, which are more acidic than the BH vertices exposed toward the cells in either A or B.
EN
Metal surfaces have become important over the last decade for potential surgical implants, and within this context we present here a study of the cell growth on modified gold surfaces. Gold films, deposited on glass plates and annealed with a hydrogen flame, were modified with four different carboranethiol derivatives: 1-(HS)-1,2-C2 B10H11(A), 1,2-(HS)2-1,2-C2B10H10(B), 9,12-(HS)2-1,2-C2B10H10(C) and 1,12-(HS)2-1,12- C2B10H10(D). The materials engendered from these modifications were used to investigate the adhesion and growth of rat aortic smooth muscle cells cultured on these surfaces in a DMEM medium with 10% of fetal bovine serum. One day after seeding, the highest number of initially adhered cells was found on the surface of a bare gold film. However, three days after seeding, the number of cells on carboranethiol-modified gold samples B, C and D was significantly higher than the number on a bare gold film. After seven days, the number of cells on a bare gold film and on gold films modified with derivatives A, B and D was very similar, but the surface of a gold film modified with derivative C exhibited a significantly smaller number of cells. This may be explained by the exposure of the CH vertices of the carborane cluster, which are more acidic than the BH vertices exposed toward the cells in either A or B.
EN
Carbon fiber-reinforced carbon (CFRC) composites were modified by grinding with abrasive papers, laser irradiation, coating with diamond-like carbon (DLC), creation of pores by laser perforation and various combinations of these treatments, and seeded with human osteoblast-like MG 63 cells. Twenty four hours after seeding, the lowest cell numbers were obtained on the non-ground, non-coated composites with Type 1 laser perforations (diameter 0.1 mm, depth 0.2 mm, spacing 0.3 mm), i.e., on samples with relatively high surface roughness (R a = 17.7 ± 0.9 μm, S = 93.0 ± 2.0 μm). On the other hand, the cells on these samples were well-spread, adhering with a relatively large cell-material projected area. In comparison with these samples, a significantly higher number of cells were obtained on composites treated with a DLC coating, especially those with laser perforation 2 (diameter 0.4 mm, depth 0.8 mm, spacing 1.2 mm). The cells on both types of laser-perforated samples started to colonize pores created by the laser beam.
EN
Arterial bypass surgery with synthetic vascular prostheses achieves poor patency rates compared to autogenous natural materials, and this is a challenge for tissue engineering research concerning small caliber vascular grafts. Modifications of the prosthetic surface followed by endothelial cell seeding may reduce thrombogenicity and intimal hyperplasia. Planar polyethylene terephthalate (PET) vascular prosthetic samples were impregnated with the copolymer poly(glycolide-L-lactide) (PGL) or with the terpolymer poly(glycolide-L-lactide-(e)caprolactone) (PGLCap) in order to lower the permeability of the knitted fabrics and ensure a less adhesive background. Subsequent modification with adhesive protein assemblies composed of collagen type I (Co) in conjunction with laminin (LM), fibronectin (FN) or fibrin (Fb) gel was performed to enhance cell adhesion. Bovine pulmonary artery endothelial cells (EC) of the CPAE line were seeded on to the coatings and subjected to static tissue culture conditions for 7 days. Impregnation of the PET prostheses decreased the initial adhesion and proliferation of the EC. After coating with the protein assemblies, the impregnated PET provided better substrates for cell culture than the protein-coated PET, on which the EC population started decreasing after 4 days of culture. The cells proliferated better on the CoFN, CoFb and CoFbFN coatings than on the Co and CoLM coatings. Impregnation type and adhesive matrix protein deposition may play an important role in successful endothelialization, healing and clinical performance of vascular grafts.
EN
The attractiveness of synthetic polymers for cell colonization can be affected by physical and chemical modification of the polymer surface. In this study, high density polyethylene (HDPE, m.w. 0.952g/cm3) and low density polyethylene (LDPE, m.w. 0.922g/cm3) were modified by an Ar plasma discharge using Balzers SCD 050 device (exposure time 10, 50, 150 and 400 seconds, discharge power 1.7W). The material was then seeded with rat aortic smooth muscle cells (RASMC; passages 8 to 9, 17 000 cells/cm3) and incubated in a DMEM medium with 10% of fetal calf serum. On day 1 after seeding, the number of initially adhered cells was significantly higher on all modified HDPE and LDPE samples. On day 2, this difference persisted in HDPE, whereas in LDPE only the values on the samples modified by 150 and 400 seconds were significantly higher. On the 5th and 7th day, there were no significant differences in cell number among all LDPE samples. However, on the HDPE foils, significant differences were still apparent on the samples modified for 400 seconds. The cell spreading areas measured on day 1 after seeding were significantly larger on all modified LDPE samples, and, on day 2, on the HDPE samples exposed for 150s. The increased cell colonization was probably due to the formation of oxygen-containing chemical functional groups in the polymer. These results suggest that the responsiveness of the cell to the changes in physiochemical surface properties was more pronounced in HDPE than in LDPE. On both types of polyethylene, the most appropriate exposure time for the enhancement of cell adhesion and growth seemed to be 150 and 400 seconds.
EN
Zirconium nitride is considered as a promising material for strengthening for surface of various materials, especially those designed for hard tissue surgery. In this study, five groups of materials were prepared: non-modified carbon fibre-reinforced carbon composites (CFRC), CFRC ground with metallographic paper, non-ground CFRC with a layer of ZrN deposited by magnetron sputtering, ground CFRC with a ZrN layer deposited by the arc technique, and ground CFRC with a ZrN layer deposited by a magnetron. We found that all samples gave good support for the adhesion and growth of human-osteoblast-like MG 63 cells, though the cell numbers on these materials were often lower than on standard cell culture polystyrene dishes and microscopic glass coverslips. Nevertheless, ZrN films can be considered as suitable materials for surface modification of bone implants in order to improve their mechanical properties and their integration with the surrounding tissue.
EN
Polyethylene terephtalate was modified by UV light irradiation produced by a Xe2-excimer lamp for 10, 20 or 30 min in an acetylene atmosphere. For creation of microdomains for selective cell adhesion, a contact nickel mask (apertures of the diameter of 500 m, centre-to-centre distance 2 mm) was used. The material was then seeded with rat aortic smooth muscle cells (passage 3, 17 000 cells/cm square). After 1, 3 and 7 days of cultivation, the cells were homogeneously distributed on the samples without any preference of the irradiated microdomains. Moreover, on day 1, the number of initially adhered cells was similar on all tested samples. However, on day 3, the number of cells on the irradiated samples was significantly higher than that on control unmodified PET and increased proportionally to the time of exposure to UV light. On day 7 after seeding, however, the cell number on the unmodified PET exceeded the value on all irradiated samples. In the second set of experiments, polyethylene (PE) was irradiated by Ar+ ions in order to create the adhesive microdomains (dose 10\12-10\14 ions/cm square, energy 150 and 15 keV, contact mask with holes of 100 m diameter and distance 200 m). The highest selectivity of the adhesion and growth of rat aortic smooth muscle cells (89% of all cells) was found on the microdomains created at the energy of 150 keV and the dose of 3x10\12 ions Ar+. The lowest selectivity (30%) occurred on samples irradiated with 150 keV Ar+ ions of the dose of 3x10\14 ions/cm square. Therefore, both methods seem to be suitable for modification of materials with highly hydrophobic surfaces in purpose to increase the cell colonization, for example when constructing bioartificial vascular replacements. The second method can be also used for the creation of domains for a regionally selective adhesion and growth of cells on biomaterials.
EN
A series of metallic materials with different surface treatments were prepared: pure machined titanium (T), titanium polished by diamond paste (TL), machined Ti6Al4V alloy (TS), Ti6Al4V alloy polished by diamond paste (TSL), Ti5Al2.5Fe alloy treated by electro-erosion (A) and Ti5Al2.5Fe plasma-sprayed with Ti (PL). The materials were seeded with human osteoblast-like cells MG 63. One day after seeding, the highest cell numbers were obtained on the samples of medium surface roughness (T and TS; Ra 0.63-0.30 um and 0.89-0.57 um, respectively). From day 1 to 4, the cell proliferation was the quickest on the samples with the lowest surface roughness (TL and TSL; Ra 0.17-0.13 for both materials). The cells on TL also contained the highest concentration of integrin adhesion molecules with alpha V chain, i.e. receptors for vitronectin and fibronectin. One day 8 after seeding, the cell on all metallic samples as well as tissue culture polystyrene reached similar population densities. The cells on electro-eroded Ti5Al2.5Fe (samples A; Ra 15.27-0.74 um) contained the highest concentration of osteocalcin and osteopontin, i.e. markers of osteoblastic differentiation. Thus, the latter newly developed material could be considered as promising for construction of bone implants well anchored in the surrounding bone tissue.
EN
In this study we have investigated the effect of three groups of polymeric foils on the behavior of MG 63 osteoblast-like cells. These included (1) poly(L-lactide) (PLLA) compared with newly synthesized copolymer of L-lactide and trimethylene carbonate (PLTMC 50:50), (2) three samples made of glycolide and epsylon-caprolactone copolymer (PGCap) with different surface roughness and topography, and finally (3) copolymer of glycolide with L-lactide (PGLA) compared with its modification with hyroxyapatite deposits. On the 1st and 4th day of cultivation the cell number on all of the samples was lower than on control polystyrene culture dish. However, on day 8 after seeding, the values on the tested samples caught up with the control polystyrene. In the first group the cell number of PLTMC was higher than on polystyrene or PLLA. In the second group, the number of cells on PGCap samples of the lower surface roughness (RRMS 130 and 180 nm) was significantly higher than that on the control polystyrene, whereas on the PGCap samples with the rounghness in micrometers, it was comparable to the value on the polystyrene. Moreover, the surface roughness influenced the cell adhesion area. The cells on the sample with the highest roughness index were roundly shaped and their adhesion area was significantly lower, because the cells were restricted in their spreading by the surface structure of the material. In the last group, the number of cells on day 8 on the polymer with hydroxyapatite deposits was significantly higher than on standard tissue culture polystyrene dish, as well as on unmodified PGLA foil, which suggested that hydroxyapatite supports cell proliferation.
EN
We evaluated antiadhesive effects of polymer surfaces prepared from PDLLA-PEO copolymers using PEO with a different molecular weight and different PEO content in comparison with the native poly(L-lactide) (PLLA) surface. All PDLLA-PEO copolymers significantly decreased number of initially adhered cells (by 23-55% in comparison with pure PLLA) as well as spreading area 24 hours after seeding (by 39-79%). Cell proliferation, estimated by cell number on the 6 day after seeding and bromodeoxyuridine (BrdU) labeling index, was significantly lower on PEO-containing copolymers (by 58-96% and 21-35% respectively) compared to pure PLLA surface. Immunofluorescence staining of vinculin showed that the ability of VSMC to form local adhesion plaques was markedly reduced on surfaces with the highest content of PEO (33 and 44%). Thus, these copolymers are promising for creation of surfaces preventing uncontrolled adsorption of proteins and adhesion of cells. Consecutively, binding of defined ligands for cell adhesion receptors would enable to control cell behaviour on these materials, which could be used for construction of vascular prostheses.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.