Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study proposes a biokinetic model for using in the assessment of the internal dose received by human subjects administered intravenously or orally with [4-14C]-cholesterol. The proposed model includes three systemic pools representing the short-term (T1/2 = 1 d), intermediate-term (T1/2 = 16 d) and long-term (T1/2 = 78 d) physiological exchanges and two excretion pathways: urine and feces. To validate the model, the predicted excretion and absorption of cholesterol was compared with that described in the literature. The radiometric doses were calculated in function of the phantom body mass (M) applying MIRD (medical internal radiation dose) protocol with ANACOMP software. The effective dose coefficients for oral administration were: 2.93×10–10 Sv.Bq–1 (73.3 kg); 3.84×10–10 Sv.Bq–1 (56.8 kg); 6.74 × 10–10 Sv.Bq–1 (33.2 kg) and 7.72 × 10–10 Sv.Bq–1 (19.8 kg). To determinate the dose for intermediate body mass M the polynomial interpolation can be used: Sv.Bq–1 (kg) = 6 × 10–15M3 – 8 × 10–13M2 + 2 × 10–11M + 6 × 10–10 (R2 ≅ 1). In the same way, for intravenous administration were: 3.72 × 10–10 Sv.Bq–1 (73.3 kg); 4.87 × 10–10 Sv.Bq–1 (56.8 kg); 8.49 × 10–10 Sv.Bq–1 (33.2 kg); 1.26 × 10–9 Sv.Bq–1 (19.8 kg). Similarly, for any M body mass: Sv.Bq–1 (kg) = –4 × 10–15M3 + 9 × 10–13M2 – 7 × 10–11M + 2 × 10–9 can be used.
EN
In this work, the establishment of a technology for HgI2 purification and crystal growth is described, aiming at a future application of this crystal as a room temperature radiation semiconductor detector. Two methods of crystal growth were studied in the development of this work: (1) physical vapor transport (PVT) and (2) saturated solution from dimethylsulphoxide (DMSO) complexes. In order to evaluate the crystals obtained using each of these methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physicochemical properties of the crystals developed was evaluated in terms of their performance as a radiation detector. The best response to radiation was found for the crystals grown by the PVT technique. Significant improvement in the performance of HgI2 radiation detector was found, purifying the crystal by means of two successive growths by the PVT technique.
EN
Gamma-ray tomography experiments have been carried out to detect spatial patterns in the porosity, in a 0.27 m diameter packed steel column using a first generation computed tomography (CT) system. The CT scanner consists of a NaI(Tl) detector 5.08 cm in diameter, and an encapsulated 137Cs (3.7 GBq) radioactive source, located opposite to the center of the detector. The detector and the source, mounted on a fixed support and the column, can rotated and dislocate by two stepping motors controlled through a microprocessor. Different sizes of stainless steel Raschig rings (12.6, 37.9 and 76 mm) have been examined. The primary objective of this work is to detect spatial patterns and statistical information on porosity variation in packed distillation columns. Horizontal scans, at different vertical positions of the packed bed were made for each size of Raschig rings. Radial porosity variation within the packed bed has been determined. This study has demonstrated that the porosity and its spatial distribution in a metallic packed column can be measured with adequate spatial resolution using the gamma-ray tomography technique. After validation of this first generation CT, the turntable design to rotate and dislocate the 60Co or 137Cs sealed gamma-ray sources and multidetector array for the third generation industrial computed tomography was also developed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.