Currently, ANSYS Fluent software is widely used as an alternative engineering tool for describing the physical processes occurring in the furnace and gas burners of the boiler. In the work, the technology of preparation and characteristics of fuel combustion of the boiler KVTK-100-150-4 of the Ekibastuz CHPP are investigated. Calculations of the energy characteristics of the combustion process in the combustion chamber have been carried out. A three-dimensional mathematical model of the combustion process was carried out using the ANSYS Fluent software. The analysis of methods for reducing the formation of harmful substances.
The usage of wet methods for flue gas dedusting from coalfired boilers is associated with significant heat losses and water resources. Widespread emulsifiers of the first and second generation are satisfactory in terms of flue gas cleaning efficiency (up to 99.5%), but at the same time do not create conditions for deeper waste heat recovery, leading to lowering the temperature of gases. Therefore, in the paper, an innovative modernization, including installing an additional economizer in front of the scrubber (emulsifier) is proposed, as part of the flue gas passes through a parallel bag filter. At the outlet of the emulsifier and the bag filter, the gases are mixed in a suitable ratio, whereby the gas mixture entering the stack does not create conditions for condensation processes in the stack.
An analysis of the methods used in Bulgaria for estimating CO2, SO2 and dust emissions has been conducted. The first methodology, which is officially used by all energy auditors at the Agency for Sustainable Energy Development targets the energy efficiency of combustion devices installed mainly at industrial enterprises. The second methodology, used by the Ministry of Environment and Water, is more comprehensive and can be applied to thermal power plants, small combustion plants as well as industrial systems. In recent years, many projects related to energy efficiency and renewable energy projects, including hydrogen technologies, which require an assessment of reduced greenhouse gas emissions, have been implemented as a priority. The use of reliable and accurate methods is essential in the assessment of greenhouse emissions. A novel methodology, based on stoichiometric equations of the combustion process for solid, liquid and gaseous fuels has been proposed and comprised. This novel methodology is characterized by higher precision compared to the methods currently in place and this is achieved through calculating emissions from the combustion of energy fuels accounting for the full elemental composition of the fuel and its heating value, whereas the current commonly applied methods use only the fuel type and the carbon content. A further benefit of the proposed methodology is the ability to estimate emissions of fuels for which there is no alternative method for calculating CO2, SO2 and dust. Results of emission calculations according to the analysed methods are presented. Finally, a comparative analysis between the presented methodologies including an assessment of their accuracy and universal applicability has been made.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.