The effect of nonlinearity is high sensitivity in damage detection, especially for closed cracks and delamination. This review illustrates the results of several researchers dealing with nonlinear effects caused by the closure of cracks in the structure, i.e., beam and plate structures. Early detection of damage is an important aspect for the structure and, therefore, continuous progress is being made in developing new and effective methods that use nonlinear effects for early detection of damage and barely visible cracks, i.e., closed cracks and delamination, as well as for the determination of crack size and location. After analysing various methods, the merits, drawbacks and prospects of a number of nonlinear vibration methods for structural damage detection are discussed, and recommendations are made for future researchers.
The mathematical model of heat generation and dissipation during thermal energy transmission employing nanoparticles in a Newtonian medium is investigated. Dimensionless boundary layer equations with correlations for titanium dioxide, copper oxide, and aluminium oxide are solved by the finite element method. Parameters are varied to analyze their impact on the flow fields. Various numerical experiments are performed consecutively to explore the phenomenon of thermal performance of the combination fluid. A remarkable enhancement in thermal performance is noticed when solid structures are dispersed in the working fluid. The Biot number determines the convective nature of the boundary. When the Biot number is increased, the fluid temperature decreases significantly. Among copper oxide, aluminium oxide, and titanium oxide nanoparticles, copper oxide nanoparticles are found to be the most effective thermal enhancers.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.