Metallic corrosion is a big challenge affecting many sectors in a nation’s economy. Necessary corrosion prevention actions have to be taken in order to maintain the integrity of engineering assets susceptible to corrosion. This paper proposes a holistic framework to support the management of corrosion in metallic structures. It is a fully automation corrosion assessment process, with risk updated by Bayesian theory. Through analyzing the thickness data measured by non-destructive testing (NDT) techniques, the influence of corrosion on the component can be estimated using statistical methods, which will enable users to make decisions on maintenance based on quantitative information. A case study using corrosion data from a steel bridge is included to demonstrate the proposed framework. It improved the conventional corrosion analysis method by the proposed statistical approach using representative thickness data, which aims to take full use of the remaining life. This model can be adapted to a wide range of metallic structure suffering from corrosion damage.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.