Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper the influence of temperature on the 3-D surface morphology of titanium nitride (TiN) thin films synthesized by DC reactive magnetron sputtering has been analyzed. The 3-D morphology variation of TiN thin films grown on p-type Si (100) wafers was investigated at four different deposition temperatures (473 K, 573 K, 673 K, 773 K) in order to evaluate the relation among the 3-D micro-textured surfaces. The 3-D surface morphology of TiN thin films was characterized by means of atomic force microscopy (AFM) and fractal analysis applied to the AFM data. The 3-D surface morphology revealed the fractal geometry of TiN thin films at nanometer scale. The global scale properties of 3-D surface geometry were quantitatively estimated using the fractal dimensions D, determined by the morphological envelopes method. The fractal dimension D increased with the substrate temperature variation from 2.36 (at 473 K) to 2.66 (at 673 K) and then decreased to 2.33 (at 773 K). The fractal analysis in correlation with the averaged power spectral density (surface) yielded better quantitative results of morphological changes in the TiN thin films caused by substrate temperature variations, which were more precise, detailed, coherent and reproducible. It can be inferred that fractal analysis can be easily applied for the investigation of morphology evolution of different film/substrate interface phases obtained using different thin-film technologies.
2
Content available remote Multifractal characteristics of titanium nitride thin films
EN
The study presents a multi-scale microstructural characterization of three-dimensional (3-D) micro-textured surface of titanium nitride (TiN) thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM) analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α). Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3 D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.
3
EN
The aim of this study is to characterize the surface topography of aluminum nitride (AlN) epilayers prepared by magnetron sputtering using the surface statistical parameters, according to ISO 25178-2:2012. To understand the effect of temperature on the epilayer structure, the surface topography was investigated through atomic force microscopy (AFM). AFM data and analysis of surface statistical parameters indicated the dependence of morphology of the epilayers on their growth conditions. The surface statistical parameters provide important information about surface texture and are useful for manufacturers in developing AlN thin films with improved surface characteristics. These results are also important for understanding the nanoscale phenomena at the contacts between rough surfaces, such as the area of contact, the interfacial separation, and the adhesive and frictional properties.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.