The shortage of investment areas may be at least partially satisfied by the development of reclaimed post-mining areas. These are often subsidence zones levelled with hard coal mine waste or reclaimed sub-level old dumps of this waste. From the geotechnical point of view, such grounds represent anthropogenic grounds containing mine waste, and they are considered as possessing unfavourable properties in terms of the foundation of building structures. The paper initially presents the analysis of the properties of waste from the hard coal mining industry, emphasising that they expose several beneficial properties enabling their safe use. The second part of the article is devoted to the determination of soil density using the DPSH probe. It has been found that the applicable standards lack complex relationships that would allow for a reliable interpretation of the measurement results in a wide range of soil types. The last part presents exemplary results of measurements made with the DPSH probe at a construction site. The obtained results allowed for the formulation of several conclusions regarding the possibility of building on a ground made of hard coal waste and the use of dynamic sounding to assess the geotechnical properties of such anthropogenic soil.
Do miejsc pracy górników w podziemnej kopalni powinno być dostarczane powietrze w ilości adekwatnej do występujących zagrożeń oraz spełniające wymogi prawne. Takimi miejscami są m.in. rejony wydobywcze i komory funkcyjne. Z drugiej strony, przewietrzanie kopalni powinno odbywać się przy jak najniższych kosztach finansowych, a więc przy najmniejszym zużyciu energii. Korzystne jest więc znalezienie takiego rozpływu powietrza w wyrobiskach kopalni, dla którego moc użyteczna wentylatorów jest najniższa, a jednocześnie rozpływ ten spełnia sztywne wymagania wynikające ze zwalczania zagrożeń naturalnych. W artykule przedstawiono metodę obliczeniową pozwalającą na szybkie wyznaczenie optymalnego rozpływu powietrza w szczególnej kopalnianej sieci wentylacyjnej, zawierającej zależne prądy powietrza łączące podsieci wentylatorów głównego przewietrzania. Przedstawiony algorytm wykorzystuje znaną w matematyce metodę złotego podziału. Wyniki osiągnięte za pomocą tej metody porównano na przykładzie z rozwiązaniem uzyskanym drogą przeliczenia wielu stanów rozpływu powietrza, aproksymacji funkcją wielomianową i określeniu jej minimum. Dla rozpatrywanego przykładu różnica w rozwiązaniach nie była większa niż 0,007%.
EN
Air should be supplied to miners’ workplaces in the underground mine in an amount adequate to the existing hazards and meeting legal requirements. Such places are e.g.: mining areas and functional chambers. On the other hand, ventilation of the mine should be carried out with the lowest possible financial costs, and therefore with the lowest energy consumption. Therefore, it is advantageous to find such air distribution in mine workings, for which the useful power of fans is the lowest, and at the same time this air distribution meets the rigid requirements resulting from preventing natural hazards. The article presents a computational method that allows for quick determination of the optimal air distribution in a specific mine ventilation network, containing dependent air currents connecting the main ventilation fan sub-networks. The presented algorithm uses the golden ratio method known in mathematics. The results obtained by this method were compared on the example with the solution obtained by converting many states of air flow, approximation by a polynomial function and determining its minimum. For the considered example, the difference in solutions was not greater than 0.007%.
Climate change can make an impact on the mining sector and post-mining sites. Among others, extreme weather events are connected with sudden and deep pressure drops which lead to gas emissions from an underground space to the surface through closed shafts. The tests undertaken in the frameworks of TEXMIN project lead to get measuring data of this phenomenon and will allow validating numerical models for further forecasts and mitigation means. Three examples of the results were presented. They showed that the intensity of pressure drop influences strongly on gas emissions from a closed shaft. Although the pressure drop process should be investigated in detail considering hourly or even more frequent variations of pressure. Considering the variation of emitted gases in the vicinity of the closed shaft they remained increased even 20-30 m from the point of emissions.
Precipitation, especially with a high intensity, affects the condition of mining waste dumps. The article presents the results of research aimed at determining the impact of rain on water erosion on the slopes of a coal waste dump and its thermal state. Preliminary tests of the condition of two slopes of the coal waste dump in Libiąż (Poland) undertaken in the frameworks of the TEXMIN project was carried out using modern geodesy techniques (low-ceiling photogrammetry and TLS terrestrial laser scanning). The current geometry of the slope surface was faithfully reproduced in the form of a cloud of points with known coordinates x, y, z. The thermal state within the analyzed slopes of the dump was also assessed. Based on thermography studies and measurements of temperature and gas concentrations inside the object, two zones of thermal activity were located on one of the examined slopes. The test results constitute the initial state against which the results of further tests will be compared. This will allow to determine the influence of precipitation on the amount of water erosion and the thermal state of the dump in a specific time period.
Subnetwork with two nodes shared with entire ventilation network can be separated as its part. For the network under common ventilation conditions, one of these nodes will become the subnetwork starting node, while the other will be the subnetwork end node. According to the graphs theory, such a piece of the network can be considered as a subgraph of the graph representing the entire ventilation network. A special feature of that subgraph is lack of predecessors of the subnetwork starting node and lack of successors of the subnetwork end node. Ventilation district of a mine may be often treated as a subnetwork. Vicinity is a part of the network which is not separated as subnetwork. In the case of a ventilation district its vicinity forces air flow through the district. The alternative characteristic curve of the vicinity can therefore be compared to the characteristics curve of a fictional fan that forces the airflow in the district. The alternative characteristics (later in the text: the characteristics) of the vicinity of the ventilation district in an underground mine strongly influence air quantity and therefore play a crucial role in the reduction of methane, fire and thermal hazards. The role of these characteristics and proper selection of their approximating function were presented in the article. The reduction of resistance of an intake stopping (having influence on entire resistance of a ventilation district) produces increased airflow in the district. This changes of airflow in the district caused by a variation in internal resistance (e.g. by opening an internal regulation stopping) depends on the characteristic of the vicinity of the district. Proper selection of its approximating function is also important for this matter. The methods of determination of the alternative characteristic curve of the district vicinity are presented. From these procedures it was possible to obtain the results of air quantities and differences in isentropic potentials between an inlet and an outlet to/from the ventilation district. Following this, the characteristics were determined by graphic and analytic methods. It was proved that, in contrast to flat vicinity characteristics, steep ones have a smaller influence on the airflow modification in the district (which are caused by a regulation of the district resistance). The characteristic curve of the vicinity determines the ability to regulate air quantity and velocity in the district.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.