W centralnej części basenu lubelskiego opracowano trójwymiarowy model utworów syluru, ordowiku i kambru. Model strukturalny obejmuje kompleksy pridolu – ludlowu, wenloku, landoweru, aszgilu, karadoku, lanwirnu, arenigu, tremadoku oraz kambru. Model strukturalny dowiązano do 76 odwiertów, a do jego opracowania wykorzystano archiwalne mapy miąższości i strukturalne oraz interpretację sejsmiki. W przestrzeni 3D wymodelowano zmienność refleksyjności witrynitu, co pozwoliło określić zasięg strefy okna gazowego, kondensatowego i ropnego. Modele zawartości węgla organicznego – współczesnej i pierwotnej, gęstości RHOB, oraz potencjału generacyjnego wyrażonego jako indeks wodorowy HI, pozwoliły oszacować bazowy model zasobów perspektywicznych z wykorzystaniem zmodyfikowanej metody Schmokera.
EN
In the presented study of central part of Lublin Basin 2D seismic, well data, laboratory measurements, well logs and results of 1D modelling in BasinMod were used as quantitative input for further Petrel based 3D modeling and resources assessment. Structural framework of the model comprises 9 surfaces (from the top of Silurian to the top of Cambrian), adjusted to stratigraphy of 76 wells. Modeled parameters involve vitrinite reflectance (Ro), present and original TOC, shale and brittle minerals volumes, RockEval S1 + S2 and HI parameters, bulk density (RHOB), porosity (PHI) and water saturation model. Models are based on laboratory data and well logs interpretation in 15 wells. Using reflectivity model oil, liquid and gas windows were established, and applying modified Schmoker method equations preliminary resources assessment for each window was completed.
Obrazowanie ścian otworu wiertniczego przy wykorzystaniu imagera mikroopornościowego (XRMI) umożliwia lokalizację elementów strukturalnych, takich jak szczeliny naturalne oraz indukowane czy strefy uskokowe, a także określenie ich przestrzennej orientacji. Analiza strukturalna rdzeni wiertniczych pozwala na obserwację struktur bezpośrednio występujących w skale. Dodatkowo umożliwia badania mineralogiczno-geochemiczne wypełnienia szczelin oraz ocenę parametrów hydraulicznych szczelin. Praca przedstawia wady i zalety stosowania wymienionych metod analizy strukturalnej w obrębie otworu wiertniczego, a także opis integracji obydwu metod.
EN
Visualization of wellbore walls using X-tended Range Micro Imager Tool (XRMI) allows to identify structural elements such as natural and induced fractures, fault zones and to define spatial orientation of this structures. Structural analysis of cores enable observations of structures occured directly in rock formation. Additionally, it is possible to perform mineralogical and geochemical analysis of fracture filling and hydraulic conductivity evaluation based on core samples. Paper presents advantages and disadvantages of using mentioned methods of structural analysis in wellbore and also a description of integration of these.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The discrete fracture network (DFN) approach offers many key advantages over conventional dual porosity approaches when the geometry and properties of discrete fractures play a significant role in geomechanics, and resource assessment (Dershowitz & Doe 1988). A comparison of the simulated data to real fractures observed on core samples increases confidence in the DFN approach. A DFN model typically combines deterministic and stochastic discrete fractures. The deterministic fractures are those directly imaged through seismic or intersected by wells. Other, usually smaller-scale fractures may not have been detected through seismic, yet may be very important for reservoir performance. These fractures are generated stochastically (Parney et al. 2000). The aim of this study is prediction of fracture properties for the Lower Palaeozoic shale rocks. The input data included seismic survey data, and well logs with FMI interpretation that were calibrated with measurements and observations on the cores to ensure accuracy in the estimates of fractures properties. This study was performed using Petrel software from Schlumberger. Typical workflows for modelling of oil and gas reservoirs were applied (e.g. Zakrevsky 2011). The result was a 3D fracture distribution model consisting of four zones. In each zone two generations of fractures were modelled based on well log data. Several seismic attributes were additionally considered as fracture density drivers for the spatial modelling. Finally, the ant tracking structural attribute was chosen as the best indicator of faults and fractures in a seismic cube. To improve the quality of the DFN model, should define the local stress distributions.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The properties and response of shale are important for the petroleum industry in shale gas research. Brittleness is a common term used to describe how rocks fail and is considered a key parameter for hydraulic fracturing initiation and propagation in low permeability rock (Hucka & Das 1974, Holt et al. 2007). The aim of this study is the prediction of shale mechanical properties of the Lower Paleozoic shale rocks. The input data include well logs with mineral content, TOC, Density, Young's modulus and Poisson's ratio and was calibrated with core lab measurements to help ensure accuracy in the estimates of mechanical rock properties. This study was performed using Petrel software from Schlumberger. Typical workflows for modelling of oil and gas reservoirs were given in Zakrevsky (2011) among others. There are two ways to define brittleness rock index (BI). The first way is to calculate the BI in terms of the proportion of minerals (e.g. quartz, carbonates and clay content) in shales (Jarvie et al. 2007): [formula]. The second way to define the BI is in terms of the geomechanical properties of Young's modulus (E) and Poisson's ratio (v) (Greieser & Bray 2007): [formula]. Brittleness in unconventional reservoirs is controlled by mineralogy. The presence of quartz and carbonates makes shales more brittle while the presence of more clay makes shales more ductile. Shales with higher Young's modulus and lower Poisson's ratio tend to be more brittle and vice versa for the ductile rocks that are controlled by clay, calcite and total organic carbon. The results of this study can be successfully used to make Mechanical Earth Model (MEM).
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Artykuł opisuje przykłady wykorzystania otworów horyzontalnych. W pierwszej części wskazano możliwości wykorzystania otworów poziomych w polskich warunkach złożowych. Następnie przedstawiono model statyczny oraz wynik symulacji przy pierwotnej eksploatacji i jej wspomaganiu CO2. Zastosowanie otworów horyzontalnych przynosi podwójne korzyści; służy do sekwestracji CO2, jednocześnie podnosząc współczynnik sczerpania złoża.
EN
The article describes examples of using horizontal wells. In the first part describes the possibilities of using of these wells in Polish conditions. In the next part describes numerical static model and the results of simulation in primary and secondary (CSEGR Carbon Sequestration & Enhanced Gas Recovery) exploitation. The use of this solution brings double benefits, is used for CO2 sequestration at the same time increase gas recovery factor.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The "Z" natural gas field is located in the southern part of the Fore-Sudetic Monocline, in the western part of Poland. Rotliegend sandstones, characterized by good reservoir properties are located in the Polish part of the Southern Permian Basin (Gast et al. 2010). The "Z" gas deposit was discovered in 1978. Reservoir "Z" structure is a regular, oval brachyanticline. The culminations are separated by a shallow depression in which the top of Rotliegend complex is located at depth somewhat less than - 1275 m bsl. Massive type accumulation covers about 25 km and shows a height up to about 105 m (Karnkowski 1999). 3D static modelling was performed using Petrel software from Schlumberger. Typical workflows for modelling of oil and gas reservoirs were applied (e.g. Zakrevsky 2011). Structural model was created by 100 m x 100 m grid increment. Ten proportional layers of reservoir zone were set resulting in model composed of over 1,000,000 cells. The base case model assumed gas/water contact at 1345 m bsl. These models were result of geostatistical simulation based on Kriging technique. The quality and number of the input data used to develop parametric models play a major role. The most important parameters characterizing the reservoir rocks are: porosity, permeability and shale volume (vshale). Average petrophysical parameters based on base case model in the area are: 15% for porosity, 45 mD for permeability and 14% for vshale. Performed structural-parametric models of the Żuchlów gas field can be successfully used for dynamic simulation and reserves estimation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.