Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The RC Circuit Described by Local Fractional Differential Equations
EN
A non-differentiable resistor-capacitor circuit comprised of the capacitor and resistor in the fractal-time domain is first proposed in this article. The solution behavior of the corresponding local fractional ordinary differential equation is presented for the Mittag-Leffler decay defined on Cantor sets. The obtained results reveal the sufficiency of the local fractional calculus in the analysis of the fractal electrical systems.
EN
Due to the star connection of the windings, the impact of the third harmonic which does not exist in three-phase permanent magnet synchronous motor (PMSM) cannot be ignored in five-phase PMSM. So the conventional sensorless control methods for three-phase PMSM cannot be applied for five-phase PMSM directly. To achieve the sensorless control for five-phase PMSM, an iterative sliding mode observer (ISMO) is proposed with the consideration of the third harmonic impact. First, a sliding mode observer (SMO) is designed based on the fivephase PMSM model with the third harmonic to reduce the chattering and obtain the equivalent signal of the back electromotive force (EMF). Then, an adaptive back EMF observer is built to estimate the motor speed and rotor position, which eliminates the low-pass filter and phase compensation module and improves the estimation accuracy. Meanwhile, by iteratively using the SMO in one current sampling period to adjust the sliding mode gains, the sliding mode chattering and estimation errors of motor speed and rotor position are further reduced. Besides, the stability of the SMO and the adaptive back EMF observer are demonstrated in detail by Lyapunov stability criteria. Experiment results verify the effectiveness of the proposed observer for sensorless control of five-phase PMSM.
EN
It was shown in the previous study that the increase of pole coordinates prediction error for about 100 days in the future is mostly caused by irregular short period oscillations. In this paper, the ultra short-term prediction of pole coordinates is studied for 10 days in the future by means of combination of empirical mode decomposition (EMD) and neural networks (NN), denoted EMD-NN. In the algorithm, EMD is employed as a low pass filter for eliminating high frequency signals from observed pole coordinates data. Then the annual and Chandler wobbles are removed a priori from pole coordinates data with high frequency signals eliminated. Finally, the radial basis function (RBF) networks are used to model and predict the residuals. The prediction performance of the EMD-NN approach is compared with that of the NN-only solution and the prediction methods and techniques involved in the Earth orientation parameters prediction comparison campaign (EOP PCC). The results show that the prediction accuracy of the EMD-NN algorithm is better than that of the NN-only solution and is also comparable with that of the other existing prediction method and techniques.
4
EN
A mathematical model known as one-order one-variable grey differential equation model GM(1, 1) has been herein employed successfully for the ultra short-term (<10days) predictions of universal time (UT1-UTC). The results of predictions are analyzed and compared with those obtained by other methods. It is shown that the accuracy of the predictions is comparable with that obtained by other prediction methods. The proposed method is able to yield an exact prediction even though only a few observations are provided. Hence it is very valuable in the case of a small size dataset since traditional methods, e.g., least-squares (LS) extrapolation, require longer data span to make a good forecast. In addition, these results can be obtained without making any assumption about an original dataset, and thus is of high reliability. Another advantage is that the developed method is easy to use. All these reveal a great potential of the GM(1, 1) model for UT1-UTC predictions.
5
Content available remote Open set lattices of subspaces of spectrum spaces
EN
We take a unified approach to study the open set lattices of various subspaces of the spectrum of a multiplicative lattice L. The main aim is to establish the order isomorphism between the open set lattice of the respective subspace and a sub-poset of L. The motivating result is the well known fact that the topology of the spectrum of a commutative ring R with identity is isomorphic to the lattice of all radical ideals of R. The main results are as follows: (i) for a given nonempty set S of prime elements of a multiplicative lattice L, we define the S-semiprime elements and prove that the open set lattice of the subspace S of Spec(L) is isomorphic to the lattice of all S-semiprime elements of L; (ii) if L is a continuous lattice, then the open set lattice of the prime spectrum of L is isomorphic to the lattice of all m-semiprime elements of L; (iii) we define the pure elements, a generalization of the notion of pure ideals in a multiplicative lattice and prove that for certain types of multiplicative lattices, the sub-poset of pure elements of L is isomorphic to the open set lattice of the subspace M ax(L) consisting of all maximal elements of L.
6
Content available remote Extreme learning machine for the predictions of length of day
EN
This work presents short- and medium-term predictions of length of day (LOD) up to 500 days by means of extreme learning machine (ELM). The EOP C04 time-series with daily values from the International Earth Rotation and Reference Systems Service (IERS) serve as the data basis. The influences of the solid Earth and ocean tides and seasonal atmospheric variations are removed from the C04 series. The residuals are used for training of the ELM. The results of the prediction are compared with those from other prediction methods. The accuracy of the prediction is equal to or even better than that by other approaches. The most striking advantages of employing ELM instead of other algorithms are its noticeably reduced complexity and high computational efficiency.
EN
This paper proposes TEO-CFCC characteristic parameter extraction method. Signal phase matching is applied to eliminate speech noise on the basis of CFCC characteristic parameter, and then Teager energy operator is added to the acquisition of CFCC characteristic parameter. In this way TEO-CFCC characteristic parameter is obtained and the energy of speech becomes one of the characteristic parameters for speaker recognition. Experiment results show that the recognition accuracy can reach to 83.2% in a -5dB SNR of vehicle interior noise environment by using TEO-CFCC characteristic parameter.
PL
W artykule przedstawiono metodę wyznaczania parametrów charakterystycznych filtru TEO-CFCC. Zastosowano tu dopasowywanie fazowe sygnału, dla eliminacji z mowy szumów oraz operator Teagera do wyrugowania parametrów. Badania eksperymentalne pokazuję, że dokładność rozpoznania głosu wynosi 83,2% przy -5dB SNR we wnętrzu pojazdu.
EN
Passive source localization in shallow water has always been an important and challenging problem. Implementing scientific research, surveying, and monitoring using a short, less than ten meter long, horizontal linear array has received considerable attention in the recent years. The short array can be conveniently placed on autonomous underwater vehicles and deployed for adaptive spatial sampling. However, it is usually difficult to obtain a sufficient spatial gain for localizing long-range sources due to its limited physical size. To address this problem, a localization approach is proposed which is based on matched-field processing of the likelihood of the passive source localization in shallow water, as well as inter-position processing for the improved localization performance and the enhanced stability of the estimation process. The ability of the proposed approach is examined through the two-dimensional synthetic test cases which involves ocean environmental mismatch and position errors of the short array. The presented results illustrate the localization performance for various source locations at different signal- to-noise ratios and demonstrate the build up over time of the positional parameters of the estimated source as the short array moves at a low speed along a straight line at a certain depth.
9
Content available remote Study on Adaptive Threshold Segmentation Method Based on Brightness
EN
Image segmentation is one of the most important steps before the image data analysis, which divided the image into several areas that have strong similarity. With the more and more widely application of the mesh fabric, the quality requirements are more stringent. As the impact of uneven illumination, the image brightness is inconsistent, which bring a great difficulty to the image segmentation of the mesh fabric. In order to eliminate the effect of uneven illumination in the image acquisition of linear CCD camera, the adaptive threshold segmentation method based on brightness is proposed. Compared with the Otsu method, it is better to eliminate the influence of the uneven illumination and provide a good foundation for subsequent data analysis.
PL
Analizowano system segmentacji obrazu polegający na podziale obrazu na obszary o dużym podobieństwie. Przy nierównym naświetleniu powstaje problem segmentacji. Zaproponowano adaptacyjny system progowej segmentacji bazujący na analizie jasności.
EN
Ship maneuvering models are the keys to the research of ship maneuverability, design of ship motion control system and development of ship handling simulators. For various frames of ship maneuvering models, determining the parameters of the models is always a tedious task. System identification theory can be used to establish system mathematical models by the system’s input data and output data. In this paper, based on the analysis of ship hydrodynamics, a nonlinear model frame of ship maneuvering is established. System identification theory is employed to estimate the parameters of the model. An algorithm based on the extended Kalman filter theory is proposed to calculate the parameters. In order to gain the system’s input and output data, which is necessary for the parameters identification experiment, turning circle tests and Zig-zag tests are performed on shiphandling simulator and the initial data is collected. Based on the Fixed Interval Kalman Smoothing algorithm, a pre-processing algorithm is proposed to process the raw data of the tests. With this algorithm, the errors introduced during the measurement process are eliminated. Parameters identification experiments are designed to estimate the model parameters, and the ship maneuvering model parameters estimation algorithm is extended to modify the parameters being estimated. Then the model parameters and the ship maneuvering model are determined. Simulation validation was carried out to simulate the ship maneuverability. Comparisons have been made to the simulated data and measured data. The results show that the ship maneuvering model determined by our approach can seasonably reflect the actual motion of ship, and the parameter estimation procedure and algorithms are effective.
11
Content available remote Hierarchical sliding mode control for a class of SIMO under-actuated systems
EN
A hierarchical sliding mode control approach is proposed for a class of SIMO under-actuated systems. This class of under-actuated systems is made up of several subsystems. Based on this physical structure, the hierarchical structure of the sliding surfaces is designed as follows. At first, the sliding surface of every subsystem is defined. Then the sliding surface of one subsystem is defined as the first layer sliding surface. The first layer sliding surface is used to construct the second layer sliding surface with the sliding surface of another subsystem. This process continues till the sliding surfaces of the entire subsystems are included. According to the hierarchical structure, the total control law is deduced by the Lyapunov theorem. In theory, the asymptotic stability of the entire system of sliding surfaces is proven and the parameter boundaries of the subsystem sliding surfaces are given. Simulation results show the feasibility of this control method through two typical SIMO under-actuated systems.
12
Content available remote Cascaded Fresnel digital hologram and its application to watermarking
EN
A cascaded Fresnel digital hologram (CFDH) is proposed, together with its mathematical derivation. Its application to watermarking has been demonstrated by a simulation procedure, in which the watermark image to be hidden is encoded into the phase of the host image. The watermark image can be deciphered by the CFDH setup, the reconstructed image shows good quality and the error is almost close to zero. Compared with previous technique, this is a lensless architecture which minimizes the hardware requirement, and it is used for the encryption of digital image.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.