Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The quality of service (QoS) is an important and considerable issue in designing survivable dense wavelength division multiplexing (DWDM) backbones for IP networks. This paper investigates the effect of network topology on QoS delivering in survivable DWDM optical transport networks using bandwidth/load ratio and design flexibility metrics. The dedicated path protection architecture is employed to establish diverse working and spare lightpaths between each node pair in demand matrix for covering a single link failure model. The simulation results, obtained for the Pan-European and ARPA2 test bench networks, demonstrate that the network topology has a great influence on QoS delivering by network at optical layer for different applications. The Pan-European network, a more connected network, displays better performance than ARPA2 network for both bandwidth/load ratio and design flexibility metrics.
EN
Design of fault tolerant dense wavelength division multiplexing (DWDM) backbones is a major issue for service provision in the presence of failures. The problem is an NP-hard problem. This paper presents a genetic algorithm based approach for designing fault tolerant DWDM optical networks in the presence of a single link failure. The working and spare lightpaths are encoded into variable length chromosomes. Then the best lightpaths are found by use of a fitness function and these are assigned the minimum number of wavelengths according to the problem constraints using first-fit (FF) algorithm. The proposed approach has been evaluated for dedicated path protection architecture. The results, obtained from the ARPA2 test bench network, show that the method is well suited to tackling this complex and multi-constraint problem.
3
Content available Control Mechanism for All-Optical Components
EN
In this article, we give a brief overview of security and management issues that arise in all-optical networks (AONs). Then we present an outline of the multiple attack localization and identification (MALI) algorithm that can participate in some of the tasks for fault management in AONs. Consequently, we discuss a hardware-based control unit that can be embedded in AON nodes to accelerate the performance of the MALI algorithm. We conclude the article with a discussion concerning the applicability and implementation of this device in AON management systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.