Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The purpose of this paper is to elaborate new calculation schemes for evaluating the strength parameters of railway rolling stock parts with non-local properties of surface layers in the presence of elliptical stress concentrators. Design/methodology/approach: Using the proposed approaches of developed mathematical modelling and open software for calculating FEniCS, it were established the most dangerous angles of stress concentrator orientation and the required thickness of the hardened zones of parts, which ensures their minimum softening during operation. Findings: It is shown that for an elliptical stress concentrator with any orientation angle, there is a certain key size of surface hardening thickness, the exceeding the value of which does not have influence on the operational strength of the parts, but rise the price of technological operations. Research limitations/implications: In this paper proposes a method for computation the impact of the orientation of the surface elliptical stress concentrators on the contact strength of parts under conditions of dominate friction power loads. Practical implications: The obtained results were used to set the modes of plasma hardening, which increase the contact strength of railway parts with elliptical stress concentrators. Originality/value: Using the approaches of contact mechanics, mathematical and computer modelling, methods of controlling the contact strength of the parts with the surface elliptical stress concentrators were proposed for the first time.
EN
Purpose: The purpose of this work is to build new computational schemes for assessing the strength parameters of parts with inhomogeneous properties of surface layers in the presence of stress concentrators. Design/methodology/approach: Using the developed approaches of mathematical modeling and open software for calculating the structures of the FEM - FEniCS, the required thickness of the hardened zones of parts has been established, which ensures their minimum softening during operation, depending on the characteristics of the stress concentrator. Findings: It is shown that for each size of the surface stress concentrator there is a critical value of the hardening thickness, the excess of which does not affect the operational strength of the parts, but increases the cost of technological operations. Research limitations/implications: In this article proposes a method for calculating the influence of the dimensional characteristics of hardening zones on the contact strength of parts with stress concentrators under conditions of prevailing power loads. Practical implications: The results obtained in this work were used to determine the technological modes of plasma hardening, which ensure an increase in the contact strength of parts with stress concentrators, depending on their dimensional characteristics. Originality/value: Using the approaches of computational mechanics and mathematical and computer modeling, methods for controlling the contact strength of parts with inhomogeneous non-local properties in the presence of a surface stress concentrator are proposed for the first time.
EN
Purpose: The aim of the work is to build physically sound engineering and design schemes that take into account the behaviour of polycrystalline metal systems under intense loads and allow optimization of surface treatment technologies to increase the operational reliability parameters of products. Design/methodology/approach: Using the approaches of thermodynamics, a methodological scheme is proposed, on the basis of which it is possible to optimize surface engineering technologies to increase the contact durability of details. Findings: It was found that the maximum increase in the durability of steel 40X13 (AISI 420) is achieved with thermocyclic ion nitriding in a cycle of ± 50°C, and the minimum with isothermal nitriding. Research limitations/implications: In this paper, the optimization of technological solutions to increase the contact durability of structural elements operating under prevailing power loads is given. Practical implications: Using the proposed mathematical relationships, optimal technological regimes of ion-plasma nitriding were established for various operating conditions, under which the maximum durability and wear resistance of 40X13 (AISI 420) steel are ensured. Originality/value: The paper proposes an approach to the formation of functionally gradient surface layers of steel with specified operational parameters when choosing optimal nitriding technology modes based on nonlocal mathematical models.
EN
Purpose: Functioning of mechanical friction systems largely depends on the characteristics of the structure of their surface layers. By controlling these parameters, it is possible to significantly adjust the reliability and durability of parts under the conditions of contact interaction. Design/methodology/approach: he proposed approach, which is based on the principle of nonlocality of the operational properties of materials, allows determining the optimal microhardness values of the surface layers and the gradient of this parameter, at which the contact durability of friction pair elements significantly increases. Findings: It is established that by adjusting the ratios of the surface strength of materials and its gradient, it is possible to achieve a significant increase in the operational parameters of friction units. Practical implications: The engineering relationship considered in the work allows to establish functional distributions of microhardness in the structure of surface layers, at which their wear reaches minimum values. Originality/value: Mathematical approaches are proposed, which allow determining the parameters of the structure of the surface layers of parts to increase their durability under conditions of friction contact loads.
EN
Purpose: Functioning of mechanical system friction units is characterized by the ability of their self-adaptation under the influence of external loads. Referring to this phenomenon it becomes possible to provide the necessary correction of the work of friction units being parts of artificial and natural tribosystems. Design/methodology/approach: As an approach used to solve the above problem, an expansion of the function describing friction unit parameters in a given basis with further refinement of the solution in accordance with the functional optimization is proposed. Findings: The received ratios allow solving the problem of adaptive control of friction units functioning when they are incorporated into the biomechanical systems. Practical implications: Using approaches developed in the present work, a pattern for the gradual adjustment of instep supports for the restoration of normal weight distribution in the human foot is presented. Originality/value: Novel approaches to the methodology of solving the problem in regard of managing the load condition of biomechanical tribosystems by their commanded control over time are offered.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.