Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Tracheostomy tubes are commonly used not only in emergencies involving airflow obstruction in the upper airways, but also during rehabilitation after ENT surgery, particularly in patients following radical laryngectomy due to cancer. Unfortunately, tracheostomy tubes used in the specific mucosal environment of the trachea and oesophagus show a limited lifespan of up to 6 months. This means that inserted tubes must be replaced regularly due to deterioration. Limitations in the function of the tubes over the course of their use are caused by various material factors that depend on the properties of the tubes or on the condition of the environment in the human body. The purpose of this paper is to evaluate the surface condition of tracheostomy tubes after 2 days and after 3 months of use.
PL
Rurki tracheostomijne są powszechnie stosowane nie tylko w nagłych przypadkach zablokowania przepływu powietrza przez górny odcinek dróg oddechowych, ale także podczas rehabilitacji po zabiegach laryngologicznych, w szczególności u chorych po radykalnym usunięciu krtani w przebiegu choroby nowotworowej. Specyficzne środowisko śluzówek tchawicy i przełyku wpływa niestety na ograniczenie żywotności rurek tracheostomijnych maksymalnie do 6 miesięcy. Oznacza to, że założone rurki wymagają okresowej wymiany z powodu obniżenia ich jakości. Ograniczenia funkcjonowania rurek w miarę ich użytkowania są spowodowane różnymi czynnikami materiałowymi, zależnymi od właściwości rurek lub zależnymi od stanu środowiska w organizmie człowieka. Przedmiotem badań w prezentowanej pracy jest ocena stanu powierzchni rurek tracheostomijnych po użytkowaniu przez 2 dni i przez 3 miesiące.
EN
The aim of the study was to make a comparative evaluation of four different types of intranasal dressings made from various types of biomaterials (three original dressings manufactured by various commercial suppliers, and the fourth one, in the form of nasal tamponage by means of a seton in a latex glove finger cot), concerning their efficacy as regards haemostatic action, assessment of postoperative pain, as well as proneness to the occurrence of postoperative adhesions. All patients who were qualified for the study were operated on in the ENT Department, Medical University of Silesia in Katowice, Poland, due to chronic bilateral inflammation of the para-nasal sinuses, confirmed by computer tomography of the sinuses. A total of 180 patients were qualified for the study. After surgery, 4 different kinds of intranasal haemostatic dressings were applied. The results were analyzed in three categories: effectiveness in the field of haemostatic activity, postoperative pain assessment (Visual Analog Scale, VAS), and assessment of the tendency to develop postoperative adhesions. Statistical analysis revealed no statistically significant differences between the 4 types of dressings in both haemostatic efficacy (p = 0.97) and the occurrence of postoperative adhesions (p = 0.84). Analysis of the intensity of pain according to the VAS scale indicated that it did not differ between the analyzed groups, both during the application of dressing (mild pain) and on the second day after the operation (medium intensity pain) – p = 0.30 and p = 0.39, respectively. No advantage has been demonstrated for any of the 4 analysed types of intranasal haemostatic dressings over any other. Their properties turn out to be comparable.
EN
Life sciences, a field closely intertwined with human biology and physiology, employ various research methods, including morphology studies and quantitative analysis through non-destructive techniques. Biological specimens often consist of three-phase structures, characterized by the presence of gas, liquid, and solid components. This becomes crucial when the chosen research methodology requires the removal of water from samples or their transfer to a cryostat. In the current research, mechanical and topographical examination of cartilage was performed. The materials were generously provided by the Department of Anatomy at the Medical University of Silesia, thereby eliminating any concerns regarding their origin or ethical use for scientific purposes. Our research methodology involved the application of atomic force microscopy (AFM), which minimally disrupts the internal equilibrium among the aforementioned phases. Cartilage, recognized as a ‘universal support material’ in animals, proves to be highly amenable to AFM research, enabling the surface scanning of the examined material. The quantitative results obtained facilitate an assessment of the internal structure and differentiation of cartilage based on its anatomical location (e.g., joints or ears). Direct images acquired during the examination offer insights into the internal structure of cartilage tissue, revealing morphological disparities and variations in intercellular spaces. The scans obtained during the measurements have unveiled substantial distinctions, particularly in the intercellular ‘essence’, characterized by granularities with a diameter of approximately 0.5 μm in ear cartilage and structural elements in articular cartilage measuring about 0.05 μm. Thus, AFM can be a valuable cognitive tool for observing biological samples in the biological sciences, particularly in medicine (e.g. clinical science).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.