Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The residual torsional strength of composite pipes after different impact loading and torsional strength with acoustic emission analysis were investigated. It was shown that the residual torsional strength of composite pipes and the strength of undamaged samples differ significantly depending on the fiber winding angle. The undamaged pipes with a winding angle of 45° showed higher torsional strength compared with the samples with an angle of 30°.
PL
Zbadano wytrzymałość resztkową na skręcanie rur kompozytowych po różnym obciążeniu udarowym oraz wytrzymałość na skręcanie z analizą emisji akustycznej. Wykazano, że wytrzymałość resztkowa rur kompozytowych na skręcanie oraz wytrzymałość próbek nieuszkodzonych różnią się znacznie w zależności od kąta nawijania włókien. Nieuszkodzone rury o kącie nawijania 45° wykazały większą wytrzymałość na skręcanie w porównaniu z próbkami o kącie nawijania 30°.
EN
This study employs axial compression testing to analyze the impact of mosaic patterns on the mechanical properties, specifically the strength and stiffness, of composite tubes. Three mosaic patterns (1/1, 2/1, and 3/1) and three winding angles (45°, 55°, and 75°) were selected for evaluation. Additionally, the acoustic emission (AE) technique was utilized to investigate the damage mechanisms occurring in the composite structures. The results showed that the higher the mosaic pattern the higher the stiffness and strength of the composite tubes under axial compression loading.
PL
W niniejszej pracy zastosowano testy osiowego ściskania w celu analizy wpływu wzorów mozaikowych na właściwości mechaniczne, w szczególności wytrzymałość i sztywność, rur kompozytowych. Wybrano do oceny trzy wzory mozaikowe (1/1, 2/1 oraz 3/1) oraz trzy kąty nawijania (45°, 55° i 75°). Dodatkowo, użyto technikę emisji akustycznej (AE) do badania mechanizmów uszkodzeń struktur kompozytowych. Wyniki pokazały, że im wyższy wzór mozaikowy, tym większa sztywność i wytrzymałość rur kompozytowych pod obciążeniem osiowego ściskania.
3
EN
Filament winding is an efficient and versatile manufacturing technique utilised to create lightweight high-strength composite structures. Glass fiber reinforced polymers (GFRP) are widely used in filament winding and can be characterised by high tensile strength, corrosion resistance, and favourable stiffness-to-weight ratios. These properties make GFRP composites suitable for various industries such as aerospace, automotive, marine, and civil engineering. Despite their widespread use, accurately identifying and verifying the mechanical properties of GFRP filament wound structures presents significant challenges. This study addresses these challenges by presenting methods to ascertain and verify the mechanical properties of GFRP filament wound pipes. Commercial pipes from Plaston-P composed of an inner PVC layer and an outer shell of glass fiber roving and mat impregnated with polyester resin were examined. Various mechanical tests were conducted, including tensile, compression, and shear tests, following ASTM standards. This paper describes the steps taken to prepare the specimens required for those tests with a strong focus on reproducing the most representative structure, highlighting potential inaccuracies in parameter identification. Finite element (FE) simulations were performed to verify the obtained parameters, using a nonlinear orthotropic material model with a progressive failure approach. The results showed that the simulated value of the apparent tensile strength of the specimen is 75.94 MPa. The fracture of the element was initiated by failure of the roving- resin layers, which was sudden and brittle. The simulation results were compared with the experimental data obtained from split disk tests according to ASTM D2290. The average apparent tensile stress from the experiment was 80.65 MPa and the specimens failed in a brittle manner. The comparison showed a satisfactory correlation between the simulation and the experiment with a value difference of approximately 6 %. The failure mechanism was also identical. It proves that the adopted method of identification allows the mechanical properties to be characterised correctly. Future research will focus on improving the correlation between the simulation and experiment by incorporating parameters to account for delamination and continuous damage of the composite.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.