Novel lead and copper salts based on anthraquinone, including 1,8-dihydroxyanthraquinone,1,4,5,8-tetrahydroxyanthraquinone and 1,8-dihydroxy-4,5-dinitroanthraquinone, were prepared and characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and X-ray fluorescence (XRF). The catalytic effects of these compounds on the decomposition of nitrocellulose (NC) and on the combustion properties of double-base (DB) and composite modified double-base (CMDB) propellants were comprehensively investigated. The results demonstrated that the burning rate is significantly increased (by 200%) in the lower pressure range (2-6 MPa) as compared to the control systems without added anthraquinone-based salts. Concurrently, the pressure exponents (n) were obviously lower, exhibiting a “wide-range plateau” combustion phenomenon in the middle-pressure region. Specifically, for the DB propellants such a plateau region extended from 10 MPa to 16 MPa for n equal to 0.10, from 10 MPa to 18 MPa for n equal to 0.11 and from 8 MPa to 18 MPa when n is 0.05. In the case of RDX-CMDB propellants, the plateau was found to be in the range 6-18 MPa, with n in the range 0.16-0.27, depending on the type of catalyst, in contrast to the reference CMDB sample, which was characterized by n equal to 0.7 for the same pressure range.
The relationship between the 15N NMR chemical shifts of aza nitrogen atoms in twelve nitramines and the impact sensitivity of these compounds, expressed as the drop energy, Edr, has been analyzed from the point of view of recently published findings. This relationship appears to be the best method for identifying the key atoms at the reaction centre of a given molecule. These atoms might be taken as “chemical hot spots”. The absence of any solid state influence on the chemical shifts, which were here determined in solution, does not have a fundamental influence on the reaction centre identification. The relationship discussed here confirms the close molecular structural dependence for drop energies (impact sensitivities) obtained for individual energetic materials (EMs) by means of a standard impact tester (Julius Peters) with the detection of the 50% probability of initiation based on acoustic detection. The dependence of impact sensitivity on specific crystal surfaces, using samples of individual EMs obtained by screening, should be investigated more extensively.
Arrhenius parameters, Ea and log A, of 17 cyclic nitramines, derived from the Russian vacuum manometric method (SMM) and compatible thermoanalytical methods, have been used in this study. The detonation velocity, D, at maximum theoretical crystal density, of the nitramines in this study was taken as a characteristic of their detonation. On the basis of known relationships between their Ea and D2 values (modified Evans-Polanyi-Semenov equation), the specific influence of some physicochemical properties on their thermal decomposition was shown. A new logarithmic relationship was found between the rate constant k, of the unimolecular thermal decomposition of the nitramines studied at 230 °C, and their D values. A fundamental characteristic of this new relationship rests on the equivalency of the primary fission processes in the low-temperature thermal decomposition and on the detonation initiation of the nitramines under study. Both these relationships confirm the problems encountered in the kinetic specification of the thermal decomposition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12hexaazaisowurtzitane (HNIW, CL-20) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). These problems, and also the possible influence of the pre-decomposition states on the thermal decomposition of the nitramines studied, are discussed.
Simple Differential Thermal Analysis (DTA), with evaluation of its output by the Kissinger method, was used in the case of emulsion explosives and, as an advanced application, for several plastic bonded explosives (PBXs). In both of these kinds of explosive the square of their detonation velocities, D2, is used as their performance characteristic. A relationship between the slope of the Kissinger equation, EaT-1, and the D2 values makes it possible to formulate a possible mechanism for the initiation of emulsion explosives. Regarding PBXs, it would seem possible to postulate a change in the detonation chemistry of plastic bonded nitramines, depending on the pressure and temperature in the zone of the detonation wave, particularly in the case of CL-20 fillers. Binders with aromatic building units in their macromolecular structure seem to be less-favoured in terms of their thermal reactivity and performance than the final PBXs. These findings document the advantages of the above-mentioned application of simple DTA.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.