We develop a physico-mathematical model of the “eddy current probe - test object” (ECP-TO) system that analytically describes current dynamics in coupled probe circuits while accounting for key physical and electrical parameters. The model, derived from the characteristic equation of transformer-type configurations for nonmagnetic and magnetic targets, explains when the measured response is harmonic or damped harmonic as a function of excitation mode and system parameters, thereby revealing additional informative features for material evaluation. We validate the model numerically using finite element (FEM) simulations (COMSOL, Magnetic Fields, frequency domain) and introduce a digital signal-processing workflow that extracts instantaneous amplitude- and phase-time characteristics during scanning. Experiments on aluminum alloy specimens demonstrate sensitivity to small conductivity variations and identify optimal excitation frequencies for reliable subsurface defect detection; in the tested configuration, an “infinitely deep crack” was detectable to 15.3 mm at 50 Hz. The combined analytical-numerical-experimental approach supports sensitivity-driven ECP design, accelerates inspection parameter selection, and facilitates integration with structural health monitoring (SHM) systems for aerospace structures.
Eddy current array (ECA) technology is increasingly being used in the aerospace industry for non-destructive testing of aircraft components. This study evaluates the performance of ECA in detecting defects in aircraft components, focusing on its effectiveness, reliability, and sensitivity. The study evaluates the effectiveness of ECA technology in eddy current defectoscopy by introducing a dimensionless efficiency coefficient, then seeks to validate this coefficient through experimental testing of aircraft component materials with artificially induced defects of various sizes, types, and orientations to simulate real-world scenarios. ECA’s sensitivity in detecting small and subsurface defects is analyzed, along with precise defect sizing and positional information. Reliability and repeatability are investigated through repeated measurements. Furthermore, the article analyses the impact of various factors on the performance of ECA, including surface conditions, probe configurations, and inspection parameters. Comparative analysis is performed to assess the advantages and limitations of ECA in comparison to other conventional inspection methods. The findings of this study will contribute to a better understanding of the capabilities and limitations of ECA in detecting aircraft component defects. The results will aid in optimizing inspection strategies, enhancing the reliability of defect detection, and improving the overall maintenance practices in the aerospace industry.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.