Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Organization of the highway strip repair process
EN
The article presents the possibilities of advance development of detailed organization-technical plans for the repair of Highway Strips, which will enable their effective use, particularly during combat operations – while maintaining the required time and technical standards at the same time. The main objectives of Highway Strips were presented; their role in securing military aviation activities and historical conditions for their creation. The concept of HS (Highway Strip) was defined along with the modern principles for their construction, modernization and renovation. Based on a selected example, the principles for evaluating the technical condition of their pavement and the repair possibility assessment were presented. At the same time, typical damage to HSs and factors affecting such damage were presented. Next, the methods and technologies for repairing various types of bituminous pavement damage repairs were discussed, with particular emphasis on the methods of repairing cracks, surface damage, deep damage and asphalt renovation. A schedule for the “Wielbark” highway strip was also developed, and the necessary calculations of the repair times, as well as the resources and resources for securing these operations were made. The article is concluded with a short summary and a proposal for further work, aimed at inhibiting the destructive processes of Highway Strips in Poland.
EN
The paper presents methods of determination of analytes of the cation group (alkyl benzyl dimethyl ammonium (BDDA-C12-C16), alkyl trimethyl ammonium (TMA), hexadecyl piridinium (HP)) in surface water and bottom sediment samples. In the sample preparation phase the solid phase extraction (SPE) or accelerated solvent extraction/ultrasound assisted extraction (ASE/UAE)-SPE technique was used and in the identification phase and quantitative determination of analytes phase - ion chromatography technique (combined with a conductivity detector (CD)). The determined concentrations were in the range below the determined method detection limit (MDL) or method quantification limit (MQL) figures up to 0.142 ±0.023 mg/dm3 or 2014 ±10 μg/kg (liquid and solid samples, respectively). Comparing concentrations of individual analytes found in liquid and solid environmental samples we may notice that surfactants containing a shorter alkyl chain in their molecules were found in higher concentrations in liquid samples (hydrophobicity increasing with the chain length).
EN
Surfactants are a group of compounds with specific physico-chemical properties and therefore they are used in many spheres of human activity. Surface-active substances undergo various physico-chemical transformations, what enables their migration between different elements of the environment and may lead to its pollution. Selected anionic surfactants were determined in samples of water from the Klodnica river (25 samples) and bottom sediments (25 samples). In most samples the presence of anionic analytes was confirmed. The determined concentration levels were in the range of up to 0.2105±0.0023 mg/dm3 or 0.207±0.010 μg/kg (surface water and bottom sediment samples, respectively). Comparing the concentrations of certain analytes found in liquid and solid environmental samples, it can be noticed that the surfactants containing a shorter alkyl chain in a molecule were present in higher concentrations in liquid samples (hydrophobicity increasing with the increasing length of the chain) and the other way round.
PL
Artykuł dotyczy doświadczeń własnych z realizacji kilkudziesięciu projektów oraz spostrzeżeń autorów w zakresie praktycznych rozwiązań na etapie projektowania oraz wykonywania przejść dla płazów w celu zwiększenia ich efektywności.
PL
Artykuł porusza problematykę istotnych błędów i optymalnych rozwiązań zagospodarowania powierzchni i otoczenia przejść dla zwierząt różnej konstrukcji (górnych, dolnych), przeznaczonych dla różnych grup taksonomicznych (w cz. I artykułu – ssaki; w cz. II – ssaki, płazy, gady). Przedstawiono syntezę dobrych praktyk możliwych do stosowania w procesie projektowym, a następnie wykonawczym, zwiększających efektywność przejść dla zwierząt.
6
EN
Non-ionic surface active agents are a diverse group of chemicals which have an uncharged polar head and a non-polar tail. They have different properties due to amphiphilic structure of their molecules. Commercial available non-ionic surfactants consist of the broadest spectrum of compounds in comparison with other types of such agents. Typically, non-ionic compounds found applications in households and industry during formulation of cleaning products, cosmetics, paints, preservative coatings, resins, textiles, pulp and paper, petroleum products or pesticides. Their are one of the most common use class of surfactants which can be potential pollution sources of the different compartment of environment (because of they widely application or discharging treated wastewaters to surface water and sludge in agricultural). It is important to investigate the behavior, environmental fate of non-ionic surfactants and their impact on living organisms (they are toxic and/or can disrupt endocrine functions). To solve such problems should be applied appropriated analytical tools. Sample preparation step is one of the most critical part of analytical procedures in determination of different compounds in environmental matrices. Traditional extraction techniques (LLE - for liquid samples; SLE - for solid samples) are time and solvent-consuming. Developments in this field result in improving isolation efficiency and decreasing solvent consumption (eg SPE and SPME - liquid samples or PLE, SFE and MAE - solid samples). At final determination step can be applied spectrophotometric technique, potentiometric titrametration or tensammetry (determination total concentration of non-ionic surfactants) or chromatographic techniques coupled with appropriated detection techniques (individual analytes). The literature data concerning the concentrations of non-ionic surfactants in the different compartments of the environment can give general view that various ecosystems are polluted by those compounds.
PL
Niejonowe surfaktanty stanowią zróżnicowaną grupę związków chemicznych, które w swojej budowie zawierają pozbawioną ładunku polarną „głowę” i niepolarny „ogon”. Tego typu związki powierzchniowo czynne ze względu na amfifilową strukturę posiadają różnorodne właściwości. Komercyjnie dostępne produkty zawsze zawierają szerokie spektrum związków o niejonowym charakterze. Niejonowe związki znalazły zastosowanie głównie w gospodarstwach domowych oraz w przemyśle przy wytwarzaniu produktów czyszczących, włókienniczych, celulozowych i papierniczych, kosmetyków, farb, powłok konserwujących, żywic, produktów naftowych i pestycydów. Jest to jedna z najczęściej wykorzystywanych klas surfaktantów, które mogą stanowić potencjalne źródło zanieczyszczenia różnych elementów środowiska (ze względu na ich szerokie zastosowanie lub kierowanie oczyszczonych ścieków do wód powierzchniowych i stosowania osadów czynnych w rolnictwie). Istotne staje się badanie losu środowiskowego substancji powierzchniowo czynnych oraz ich wpływu względem organizmów żywych (ze względu na działanie toksyczne i zdolność do wpływu na funkcje endokrynologiczne). Te zagadnienia mogą być rozwiązywane przez stosowanie odpowiednich narzędzi analitycznych. Etap przygotowania próbek do analizy jest jednym z najważniejszych etapów procedur analitycznych. Tradycyjne techniki ekstrakcji (LLE - dla próbek ciekłych; SLE - dla próbek stałych) cechują się czasochłonnością oraz używaniem dużych ilości rozpuszczalników. Rozwój w tym zakresie doprowadził do poprawy efektywności izolacji analitów oraz zmniejszenia wymaganych objętości rozpuszczalników (np. SPE i SPME - próbki ciekłe lub PLE, SFE i MAE - próbki stałe). Na etapie oznaczania końcowego mogą być wykorzystane: technika spektrofotometryczna, technika miareczkowania potencjometrycznego lub tensammetria (do określania sumarycznego stężenie niejonowych związków powierzchniowoczynnych) oraz techniki chromatograficzne (do określania poziomów stężenie pojedynczych analitów). Analiza danych literaturowych dotyczących stężeń surfaktantów w różnych elementach środowiska pozwala na stwierdzenie, że różne ekosystemy są zanieczyszczone przez związki o charakterze niejonowym.
7
Content available remote Determination of Surfactants in Environmental Samples. Part II. Anionic Compounds
PL
Związki powierzchniowo czynne (SAA) o ujemnym ładunku polarnej części cząsteczek określane są jako anionowe surfaktanty. Ich wielkość produkcji jest najwyższa wśród syntetycznych związków. Z tej grupy analitów są zazwyczaj stosowane liniowe alkilobenzen sulfoniany (LAS), alkilo etoksysiarczany (AES) oraz alkilo siarczany (AS). Tego typu surfaktanty są składnikami detergentów i produktów czyszczących używanych w gospodarstwach domowych, środkach piorących, kosmetykach. Są one wykorzystywane w przemyśle papierniczym, tekstylnym i garbarskim jako optyczne wybielacze, środki rozpraszające, zwilżające i rozpraszające. Co więcej, są one używane przy wytwarzaniu barwników, pestycydów, żywic jonowymiennych, plastyfikatorów oraz farmaceutyków. Anionowe surfaktanty wraz ze ściekami trafiają do oczyszczalni ścieków, gdzie są poddawane degradacji oraz dochodzi do zjawiska adsorpcji w osadzie czynnym (wykorzystywanym w rolnictwie). Ostatecznie, związki z grupy anionowych SAA lub produkty ich degradacji są emitowane do wód powierzchniowych, a następnie do osadów dennych, gleby i są akumulowane przez organizmy żywe. Stąd istotne staje się poznawanie w sposób bardziej szczegółowy losu środowiskowego tej klasy związków (ze względu na ich szerokie wykorzystywanie, podatność na zjawisko bioakumulacji oraz toksyczności względem organizmów żywych). Tego rodzaju badania obejmują określanie poziomów zawartości surfaktantów w różnego typu próbkach z użyciem odpowiednich narzędzi analitycznych. Oficjalne metodyki analityczne dotyczące określania zawartości anionowych związków w ciekłych próbkach środowiskowych są oparte na reakcji tworzenia par jonowych z błękitem metylenowym (MB), a następnie ekstrakcji do toksycznego rozpuszczalnika chloroformu. Na etapie izolacji anionowych analitów ze stałych próbek stosowane są techniki ekstrakcji za pomocą rozpuszczalnika w aparacie Soxhleta lub ekstrakcji wspomaganej falami ultradźwiękowymi (z użyciem jako medium ekstrakcyjnego metanolu lub mieszaniny z innymi rozpuszczalnikami). By wyeliminować wady tego typu tradycyjnych technik, na etapie przygotowania próbek do analizy stosowane są odpowiednio: ekstrakcja do fazy stałej (SPE) oraz mikroekstrakcja do fazy stałej (SPME) - próbki ciekłe; przyspieszona ekstrakcja za pomocą rozpuszczalnika (ASE), ekstrakcja za pomocą rozpuszczalnika wspomagana promieniowaniem mikrofalowym (MAE) lub ekstrakcja za pomocą płynu w stanie nadkrytycznym (SFE). W celu określenia sumarycznej zawartości anionowych analitów w ekstraktach stosowana jest technika spektrofotometrii (według obowiązujących regulacji prawnych). Określenie poziomów stężeń indywidualnych analitów odbywa się z reguły z użyciem chromatografii gazowej (konieczny etap derywatyzacji analitów) bądź cieczowej w połączeniu ze spektrometrią mas. Obecność anionowych związków powierzchniowo czynnych została potwierdzona w różnorodnych ekosystemach (ciekłych i stałych próbkach środowiskowych).
8
Content available remote Determination of surfactants in environmental samples. Part I. Cationic compounds
EN
Compounds from the group of cationic surfactants are widely applied in household, industrial, cleaning, disinfectant, cosmetic and pharmaceutical products as their specific properties (antimicrobial, emulsifying, anticorrosion, softening). After use, cationic surfactants are disposed to wastewater-treatment plants and finally with effluent water to surface waters due to their incomplete degradation. Moreover, they can freely circulate in different environmental compartments including living organisms. It becomes indispensable to recognize in more detail behavior, fate and biological effects of cationic surfactants. This analytical problem can be solved with use sensitive and reliable analytical techniques at sample preparation step and final determination step. In recent years, during isolation analytes from environmental samples mainly were used liquid-liquid extraction (LLE) - liquid matrices or solid-liquid extraction (SLE) - solid matrices. This technique involves application of toxic solvents (chloroform), is time-consuming and interferences are co-extracted. Nowadays, in scientific centers are carried out research to replace this traditional technique. So far, the following techniques were applied: solid-phase extraction (SPE) or it modification (HF-LPME) - liquid samples; accelerated solvent extraction (ASE) and supercritical fluid extraction (SFE) - solid samples. During the determination of total content of cationic surface active agents in environmental samples were used a traditional spectrophotometry technique and potentiometric titration technique. But those techniques are susceptible of interferences on analysis results (anionic and non-ionic compounds). The chromatographic technique (liquid chromatography) applied at the final determination step gives possibility to determine individual cationic surfactants in solvent extracts of environmental samples. The LC systems coupled with mass spectrometers are most powerful tools during such analysis.
PL
Związki z grupy kationowych surfaktantów ze względu na swoje właściwości (bakteriobójcze, grzybobójcze, emulgujące, antykorozyjne, zmiękczające) są szeroko wykorzystywane w gospodarstwach domowych oraz przemyśle jako środki myjące, dezynfekujące i produkty farmaceutyczne. Po zastosowaniu w różnych dziedzinach działalności człowieka kationowe surfaktanty są kierowane do oczyszczalni ścieków, a następnie do wód powierzchniowych wraz z oczyszczoną wodą (ze względu na ich niecałkowitą degradacją). Ponadto, mogą one swobodnie migrować pomiędzy różnymi elementami środowiska, w tym w żywych organizmach. Zatem istotne staje się poznawanie w sposób bardziej szczegółowy zachowania, losu oraz efektów względem organizmów żywych związków z grupy kationowych surfaktantów. To zagadnienie analityczne może być rozwiązane z użycie czułych i selektywnych technik analitycznych na etapie przygotowania próbek do analizy oraz na etapie oznaczania końcowego. W ciągu ostatnich lat na etapie izolacji analitów z próbek środowiskowych wykorzystywane były głównie techniki ekstrakcji w układzie ciecz-ciecz (LLE) - ciekłe próbki lub ciało stałe-ciecz (SLE) - stałe próbki. Ta technika obejmuje zastosowanie toksycznych rozpuszczalników (chloroformu), jest czasochłonna oraz substancje przeszkadzające są współekstrahowane. Obecnie w wielu ośrodkach naukowych są prowadzone badania mające na celu zastąpienie tych tradycyjnych technik. Jak dotąd wykorzystywano następujące techniki analityczne: ekstrakcja do fazy stałej (SPE) bądź jej modyfikacja (HF-LPME) - ciekłe próbki; przyspieszona ekstrakcja za pomocą rozpuszczalnika (ASE) lub ekstrakcja za pomocą rozpuszczalnika w stanie nadkrytycznym (SFE) - stałe próbki. W celu oznaczenia sumarycznej zawartości surfaktantów w próbkach środowiskowych były najczęściej wykorzystywane tradycyjne techniki: spektrofotometrii oraz miareczkowania potencjometrycznego. Jednak stosowanie tych technik wiąże się z ich podatnością na obecność substancji przeszkadzających (anionowych i niejonowych związków). Zastosowanie na etapie oznaczania końcowego techniki chromatograficznej (chromatografii cieczowej) umożliwia oznaczanie pojedynczych kationowych środków powierzchniowo czynnych w ekstraktach rozpuszczalnikowych przygotowanych z próbek środowiskowych. Chromatografia cieczowa w połączeniu ze spektrometrią mas jest obecnie jednym z najbardziej uniwersalnych narzędzi analitycznych wykorzystywanych podczas tego typu analiz.
PL
Związki należące do grupy surfaktantów pomimo wysokiego stopnia degradacji oraz ograniczania ich negatywnego oddziaływania względem różnych ekosystemów nadal są emitowane w dużych ilościach do środowiska naturalnego.
10
Content available remote Występowanie surfaktantów w próbkach środowiskowych
EN
Surfactants (ionic and nonionic compounds, Fig. 1) have specific properties and they are applied in various areas of human activity (Tab. 2). The most important properties of surfactants are: amphiphilicity (Fig. 3), solubility in liquids of different polarity, formation of micellar structures (Fig. 4), adsorption and absorption in various media, toxicity (Tab. 1) [12–23] and susceptibility to degradation. The widely used various types of surfactants contribute to emission of pollutants to the environment (Fig. 6) [32–40]. So it is necessary to monitor their presence in ecosystems (also products of their incomplete degradation) and thus, the development of analytical methodologies, which allow for quick determination of many surfactants at low levels is needed. Therefore environmental samples have to be prepared for analysis using techniques of isolation and enrichment of analytes (usually LLE, ASE, SPE) [41–56]. For quantitative and qualitative determination of the analytes in extracts following analytical techniques are used: spectrophotometry, tensammetry, chromatography, capillary electrophoresis [57–78]. In the literature one can find information about determination of surfactants in different environmental samples. There is data available about levels of surfactants (especially anionic and nonionic) in solid (sediments and sludges, soil, street dust) and liquid samples (surface water and groundwater, wastewater, atmospheric deposits) (Tab. 3) [79–91].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.