Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A bionic hand with fine motor ability could be a favorable option for replacing the human hand when performing various operations. Myoelectric control has been widely used to recognize hand movements in recent years. However, most of the previous studies have focused on whole-hand movements, with only a few investigating subtler motions. The aim of this study was to construct a prototype system for recognizing hand postures with the aim of controlling a bionic hand by analyzing sEMG signals measured at the flexor digitorum superficialis and extensor digitorum muscles. We adopted multiple features commonly used in previous studies—mean absolute value, zero crossing, slope sign change, and waveform length—in the algorithm for extracting hand-posture features, and the k-nearest-neighbors (KNN) algorithm as the classifier to perform hand-posture recognition. The bionic hand was controlled by an Arduino microprocessor, which converted the signals received from the classification process that were fed to the servo motors controlling the bionic fingers. We constructed a two-channel sEMG pattern-recognition system that can identify human hand postures and control a homemade bionic hand to perform corresponding hand postures. The KNN approach was able to recognize four different hand postures with a classification accuracy of 94% in the online experiment by using the channel combination. Moreover, the experimental tests show that the bionic hand could faithfully imitate the hand postures of the human hand. This study has bridged the gap between the features of sEMG signals of fingers and the postures of a bionic hand.
EN
Highly conductive gallium-doped zinc oxide (GZO) transparent thin films were deposited on glass substrates by RF magnetron sputtering. The deposited films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), four-point probe and UV-Vis spectrophotometer, respectively. The effect of growth temperature on the structure and optoelectrical properties of the films was investigated. The results demonstrate that high quality GZO films oriented with their crystallographic c-axis perpendicular to the substrates are obtained. The structure and optoelectrical properties of the films are highly dependent on the growth temperature. It is found that with increasing growth temperature, the average visible transmittance of the deposited films is enhanced and the residual stress in the thin films is obviously relaxed. The GZO films deposited at the growth temperature of 400 degrees C, which have the largest grain size (74.3 nm), the lowest electrical resistivity (1.31 x 10(-3) Omega.cm) and the maximum figure of merit (1.46 x 10(-2) Omega(-1)), exhibit the best optoelectrical properties. Furthermore, the optical properties of the deposited films were determined by the optical characterization methods and the optical energy-gaps were evaluated by extrapolation method. A blue shift of the optical energy gap is observed with an increase in the growth temperature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.