Coastal erosion is one of the major problems in coastal management. To adapt to it, and prevent it where possible and needed, it is important to recognize the temporal and spatial scale of the phenomenon as well as its causes. This paper describes the rapid erosion rate along an approximately 2.25 km stretch of the southern Baltic coast. The erosion occurs within a nature reserve, which is not subject to direct anthropogenic impact. Historical maps and modern remote sensing were used to trace changes in the shoreline position from 1875 to the present, and detailed DTMs derived from airborne LiDAR were used to trace elevation changes of the beach and dunes over the past years. The weighted maximum annual erosion rate since 1875 averages 2.3 m. An increase in this annual erosion rate has been observed since the turn of the millennium. The maximum average erosion rate from 2001 to 2005 was 15 m/year. The erosion has caused serious changes in elevation within the inland part of the coastal zone, manifested by a reduction in the width of the beach and a decrease in the height of the beach and dunes.
Research by the Polish Geological Survey has been carried out along the southern Baltic coastal zone over a distance of 38 km. The Baltic Sea is classified as non-tidal, and its southern coasts are built entirely of weakly lithified sedimentary rocks. These deposits form three main types of coast, namely cliffs, barriers and alluvial coasts (wetlands), with the research focusing on the first two. Methods including remote sensing, mapping (geological, hydrogeological), offshore survey (bathymetric and geophysical measurements), laboratory analyses and modelling revealed a number of natural hazards. These are, respectively: (1) permanently occurring hazards, causing material damage such as: landslides, coastal erosion and seabed erosion; (2) incidental hazards such as dune breakage and storm surge overflow and (3) hypothetical threats that may occur in the future, such as hydrogeohazards defined here as flooding resulting from groundwater level rise or more rarely, earthquake threats.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.