Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The weld lines in injection molded parts arise as a result of the collision of two fronts of the flowing material, which fills the mold cavity and are sometimes unavoidable. They decrease the mechanical properties and surface state of the moldings, due to insufficient connection of the fronts of melted polymer streams. The paper discusses the reasons for the occurrence of weld lines in molded parts, which have been divided into ones related to the design of the injection molded part, properties of the injected material, injection mold construction and injection parameters. The design of the molded parts should ensure even, smooth flow of the material in the cavity, but in the case of parts with many injection points, holes, varied wall thickness, complicated and irregular structure the weld lines can not be avoided. The type of material processed significantly influences the strength of the weld line area. Too high viscosity of the material, fillers and large particles of the coloring agent highly oriented in the weld line area, are the factors lowering properties of the molded part. Considering the design of the injection mold, the most important aspects in forming proper parts with weld lines are correct venting of the mold, small differences in the material temperature in all cavity areas, correctly selected injection points, avoiding jet filling of the cavity. The quality of such parts can be improved by changing the injection conditions, mainly by increasing the mold and melt temperature, also increasing the holding pressure and the injection speed. The possibilities of preventing the weld lines creation or reducing the negative effects of their occurrence have been presented, e.g. by changing the design and location of gates in injection molds, changing processing conditions or using unconventional methods of injection molding, like cascade cavity filling, push-pull and multiple live-feed injection molding, vibration process. Further examinations in the range of cyclic heating/cooling of the injection mold are suggested as the most promising regarding the quality of parts in the area of weld line, their strength and surface state.
PL
Obszary łączenia strumieni tworzywa w wypraskach wtryskowych powstają w wyniku zderzenia się ze sobą dwóch frontów przepływającego tworzywa, wypełniającego gniazdo formujące, i są niekiedy zjawiskiem nieuniknionym. Z powodu niedostatecznego połączenia ze sobą frontów strumieni uplastycznionego tworzywa pogarszają się właściwości mechaniczne oraz stan powierzchni wyprasek. Omówiono przyczyny występowania obszarów łączenia strumieni tworzywa w wypraskach związane z: budową wypraski, właściwościami wtryskiwanego tworzywa, konstrukcją formy wtryskowej oraz warunkami wtryskiwania. Budowa wyprasek powinna zapewniać równomierny przepływ materiału w gnieździe formującym, jednak w wypadku wyprasek z wieloma punktami wtrysku, otworami, zróżnicowaną grubością ścianek, skomplikowanym kształtem nie można uniknąć powstawania linii łączenia strumieni tworzywa. Rodzaj przetwarzanego materiału ma istotny wpływ na wytrzymałość obszaru łączenia strumieni tworzywa. Zbyt duża lepkość tworzywa, obecność napełniaczy i dużych cząstek środka barwiącego silnie zorientowanych w obszarze linii łączenia są czynnikami pogarszającymi właściwości formowanych wyprasek. Do najważniejszych czynników, uwzględnianych podczas projektowania formy wtryskowej, decydujących o wytwarzaniu poprawnych wyprasek z liniami łączenia strumieni tworzywa zalicza się: prawidłowe odpowietrzanie formy, niewielkie różnice w temperaturze materiału we wszystkich obszarach gniazda formującego, odpowiednio dobrane punkty wtrysku oraz unikanie strumieniowego wypełniania gniazda. Jakość takich wyprasek można także poprawić w wyniku zmiany warunków wtryskiwania, głównie zwiększenia temperatury formy i tworzywa wtryskiwanego, a także zwiększenia ciśnienia docisku i prędkości wtrysku. Przedstawiono możliwości zapobiegania powstawaniu obszarów łączenia strumieni tworzywa lub ograniczania negatywnych skutków ich występowania, np. w wyniku zmiany budowy i usytuowania przewężek w formach wtryskowych, zmiany warunków przetwarzania lub zastosowania niekonwencjonalnych metod wtryskiwania, takich jak: wtryskiwanie kaskadowe, pulsacyjne liniowe i rozdzielcze lub wibracyjne. Dalsze badania w zakresie wtryskiwania z cyklicznym nagrzewaniem/ochładzaniem formy wtryskowej są sugerowane jako najbardziej obiecujące pod względem otrzymywania dobrych jakościowo wyprasek w obszarze łączenia strumieni tworzywa, o dużej wytrzymałości i dobrym stanie powierzchni.
2
EN
To obtain tribologically useful surface layers (SL) electrochemical treatment called anodic hard coating (AHC) is applied. The formation of the hard oxide layers on aluminium alloys increases the range of its application in different fields of industry. The possibilities of dripping some lubricating agent during preparation of the coating makes it possible to apply AHC to sliding couplings which do not have to be lubricated during operating e.g. in non-lubricated compressors used in power engineering for arc suppression, in pneumatic drives of the robots and manipulators used in medicine, food industry and pharmaceutical industry. Under conditions of technically dry friction AHC works well with plastics containing substances such as PTFE, graphite and MoS2, which support the creation of sliding film during exploitation. Under conditions of limited and conventional lubrication these surfaces, after necessary modification, also work well with cast iron piston rings and steel sliding surface of combustion engine cylinder.
PL
W celu uzyskania tribologicznie przydatnych warstw wierzchnich (WW) stosuje się elektrochemiczną obróbkę zwaną anodowaniem twardym. Wytworzenie na stopach aluminium anodowej powłoki tlenkowej (APT) zwiększa w znacznym stopniu możliwość ich zastosowania w różnych dziedzinach przemysłu. Właściwości użytkowe anodowych powłok twardych można kształtować stosownie do potrzeb już na etapie wytwarzania. W dotychczasowej praktyce znalazły one zastosowanie na węzły ślizgowe obiektów technicznych pracujących w warunkach tarcia technicznie suchego i ograniczonego smarowania oraz smarowania konwencjonalnego. W pierwszym przypadku APT współpracują z tworzywami sztucznymi zawierającymi substancje filmotwórcze (wspomagające wytwarzanie podczas eksploatacji filmu ślizgowego) np. PTFE, grafit, MoS2. W warunkach ograniczonego i konwencjonalnego smarowania powłoki te - po odpowiedniej modyfikacji - współpracują z żeliwnymi pierścieniami tłokowymi lub stalowymi gładziami cylindrów silników spalinowych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.