Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Risks in the maritime domain have various sources, of which the transportation of oil and other noxious products is one of key concern to industry and public stakeholders. Operational or accidental releases of oil or other pollutants from ships or offshore facilities into the marine environment can have disastrous effects on the marine ecosystems, while also leading to very significant economical losses. Therefore, national states have implemented various mechanisms for preventing and responding to pollution in the maritime domain, with activities which are often embedded in regional cooperation frameworks clustered around certain sea areas. To support collaborative, harmonized, and risk-informed oil spill Pollution Preparedness and Response (PPR) planning for response authorities, the Baltic Marine Environment Protection Commission (HELCOM), together with its research partners, and with extensive end-user and stakeholder inputs, have developed the OpenRisk Toolbox. This toolbox includes several risk assessment tools and techniques, which can assist in providing answers to a range of PPR risk management questions in a range of organizational contexts. To better understand and ensure the applicability and usefulness of the OpenRisk Toolbox, a workshop was organized where some of these tools were tested. Selected end user and stakeholder views on the perceived usefulness of the tools were collected and analyzed. Another workshop focused on further development needs to implement the tools in organizational practices. This paper first presents the OpenRisk Toolbox, then describes the settings of the workshops. Finally, a summary of the end-user and stakeholder views on the tested tools, and on future development needs, is given.
EN
Currently there is growing interest in unmanned shipping. In the case of unmanned ‘autonomous’ shipping, navigation is automated by on-board decision-making systems. Important motives for unmanned ships include the shortage of skilled mariners, the facilitation of slow steaming strategies, efficiency improvements in confined shipping areas, and increased safety. The aim of the present research is to simulate an unmanned ship through an Automatic Identification System (AIS) based traffic situation. In order to do this, the Maritime Research Institute Netherlands (MARIN) will use the existing simulation technology Dolphin, implement a new tool to read AIS data, simulate a large amount of ships, and develop an auto-captain. The real-time dynamic risk index developed by MARIN will be integrated in Dolphin, to monitor nautical safety of all ships with focus on the unmanned ship. The simulated unmanned ship will navigate according to the International Regulations for Preventing Collisions at Sea (COLREGS). In more complex situations, the auto-captain may use a dedicated decision support tool to find a more efficient solution to pass safely. This approach will be analysed using the real-time dynamic risk index, which will be updated based on latest insights. This paper will discuss the latest development and plans in the unmanned ship simulation project.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.