In this paper we propose and evaluate a soft computing-based passage retrieval system for Question Answering Systems (QAS). Fuzzy PR, our base-line passage retrieval system, employs a similarity measure that attempts to model accurately the question reformulation intuition. The similarity measure includes fuzzy logic-based models that evaluate efficiently the proximity of question terms and detect term variations occurring within a passage. Our experimental results using FuzzyPR on the TREC and CLEF corpora show that our novel passage retrieval system achieves better performance compared to other similar systems. Finally, we describe the performance results of OptFuzzyPR, an optimized version of FuzzyPR, created by optimizing the values of FuzzyPR system parameters using genetic algorithms.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.