The development of all-solid photonic crystal fibres for nonlinear optics is an alternative approach to air-glass solid core photonic crystal fibres. The use of soft glasses ensures a high refractive index contrast (> 0.1) and a high nonlinear coefficient of the fibres. We report on the dispersion management capabilities in all-solid photonic crystal fibres taking into account four thermally matched glasses which can be jointly processed using the stack-and-draw fibre technique. We present structures with over 450 nm broadband flat normal dispersion and ultra-flat near zero anomalous dispersion below 5 ps/nm/km over 300 nm dedicated to supercontinuum generation with 1540 nm laser sources. The development of an all-solid photonic crystal fibre made of F2 and NC21 glasses is presented. The fibre is used to demonstrate supercontinuum generation in the range of 730–870 nm (150 nm) with flatness below 5 dB.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Photonic crystal fibres (PCF) can provide the high confinement needed to enable nonlinear optical processes to be studied in silicate fibre over short lengths without the need for large pulse energies. Additionally, the capillary stacking technique for PCF fabrication lends itself to the design of multiple core fibres and this capability has triggered much work into the properties of dual core PCF. In this paper, the effect of the dual core interaction on the nonlinear wavelength conversion is studied using a femtosecond oscillator in the near IR range. Effective supercontinuum generation in the range 1300-1700 nm is achieved in the anomalous dispersion regime.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.