Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Estimation of Apollo Lunar Dust Transport using Optical Extinction Measurements
EN
A technique to estimate mass erosion rate of surface soil during landing of the Apollo Lunar Module (LM) and total mass ejected due to the rocket plume interaction is proposed and tested. The erosion rate is proportional to the product of the second moment of the lofted particle size distribution N(D), and third moment of the normalized soil size distribution S(D), divided by the integral of S(D)⋅D2/v(D), where D is particle diameter and v(D) is the vertical component of particle velocity. The second moment of N(D) is estimated by optical extinction analysis of the Apollo cockpit video. Because of the similarity between mass erosion rate of soil as measured by optical extinction and rainfall rate as measured by radar reflectivity, traditional NWS radar/rainfall correlation methodology can be applied to the lunar soil case where various S(D) models are assumed corresponding to specific lunar sites.
2
Content available remote In situ disdrometer calibration using multiple DSD moments
EN
In situ calibration is a proposed strategy for continuous as well as initial calibration of an impact disdrometer. In previous work, a collocated tipping bucket had been utilized to provide a rainfall rate based ~11/3 moment reference to an impact disdrometer’s signal processing system for implementation of adaptive calibration. Using rainfall rate only, transformation of impulse amplitude to a drop volume based on a simple power law was used to define an error surface in the model’s parameter space. By incorporating optical extinction second moment measurements with rainfall rate data, an improved in situ disdrometer calibration algorithm results due to utilization of multiple (two or more) independent moments of the drop size distribution in the error function definition. The resulting improvement in calibration performance can be quantified by detailed examination of the parameter space error surface using simulation as well as real data.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.