Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 59

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
EN
Choosing the right pipeline diameter is essential for both newly designed district heating (DH) networks and existing ones undergoing upgrades. A multi-stage optimization algorithm was developed for the purpose of selecting optimal diameters of pipelines in a DH network that has a complex layout including branches and rings. The DH network was represented as a set of graphs and then as matrices, which made hydraulic and heat-and-flow calculations possible for any network layout. The optimization algorithm was developed as a Visual Basic program consisting of 37 macros. The program considers hydraulic resistances, heat-balance equations, capital expenditure for DH pipelines of 32 to 1,100 mm in diameter, and the operating cost, including the costs of heat transmission losses and DH water pumping. Microsoft Excel’s Solver tool was used to solve the non-linear optimization algorithm with constraints. To provide an example of the program’s application, the paper includes calculations used to verify the correctness of selected diameters for part of an existing DH network in a large DH system in Poland.
PL
W artykule zarysowana została koncepcja zasilania budynków o niskim zużyciu ciepła (energooszczędnych) wodą sieciową powrotną w krajowych systemach ciepłowniczych. Określono potencjalne zyski składające się z obniżenia kosztów przesyłania ciepła oraz dodatkowych korzyści uzyskanych w kogeneracji z tytułu obniżenia temperatury wody powrotnej w EC. Zaprezentowano przyjęty na potrzeby obliczeń schemat sieci oraz warianty podłączenia budynków energooszczędnych zasilanych wodą sieciową o obniżonych parametrach.
EN
The paper describes the concept of low temperature return water utilization for heat supply to the modernized "energy savin" buildings. Potential cost reduction in heat transport from the heat source to the consumer was determined. Cogeneration profits due to the lowering DH network return water temperature were estimated. Assumed calculation scheme of the DH system were analyzed. Two alternatives of heating substations, installed in the modernized, low energy consumption buildings, connected to the DH Network were presented.
3
Content available remote PES a sprawność wytwarzania ciepła i energii elektrycznej w kogeneracji
PL
Inspiracją do napisania artykułu jest, naszym zdaniem, wadliwa definicja sprawności wytwarzania ciepła i energii elektrycznej w układach kogeneracyjnych zawarta w Rozporządzeniu Ministra Energii z dnia 10 kwietnia 2017 r. w sprawie sposobu obliczania danych podanych we wniosku o wydanie świadectwa pochodzenia z kogeneracji oraz szczegółowego zakresu obowiązku potwierdzania danych dotyczących ilości energii elektrycznej wytworzonej w wysokosprawnej kogeneracji [14]. Pozwala ona wprawdzie poprawnie obliczać wartość oszczędności energii pierwotnej (PES) uzyskiwaną w kogeneracji, ale nie może być stosowana ani do określania zużycia energii pierwotnej do produkcji ciepła i energii elektrycznej u odbiorców zasilanych w ciepło i energię elektryczną pochodzącą z elektrociepłowni (EC), ani do porównywania sprawności produkcji ciepła w EC i ciepłowniach z czym w wielu publikacjach mamy do czynienia. W związku z wytwarzaniem w EC w skojarzeniu dwóch produktów o różnej wartości energetycznej: ciepła i energii elektrycznej „zwykła” sprawność energetyczna nie oddaje w sposób obiektywny efektywności układu kogeneracyjnego. Dlatego przez szereg lat wielu autorów poszukiwało zobiektywizowanej sprawności elektrociepłowni (układu kogeneracyjnego). Można stwierdzić, iż żadna z tych definicji nie jest w pełni zadowalająca. Dlatego wprowadzono metodę porównawczą oceny układów kogeneracyjnych, która obecnie przybrała formę PES tj. oszczędności energii pierwotnej, określanej w odniesieniu do rozdzielnego wytwarzania ciepła i energii elektrycznej (Prawo energetyczne [9], Dyrektywa [10], Rozporządzenie [14]). Warto podkreślić, iż w Polsce metodę tę stosowano już od lat 60. XX wieku (Wagner [7] , Marecki [3] , Szargut [6]) używając równoważnej do PES miary tj. oszczędności paliwa.
EN
The article is inspired, by the flawed definition of the efficiency of heat and electricity generation in cogeneration systems contained in the Regulation of the Minister of Energy of 10 April 2017 on the method of calculating the data given in the application for a certificate of origin from cogeneration and the detailed scope of the obligation to confirm the data concerning the amount of electricity generated in high-efficiency cogeneration [14]. Although it allows for a correct calculation of primary energy savings (PES) from cogeneration, it cannot be used to determine the primary energy consumption for heat and electricity production of heat and electricity from cogeneration plants or to compare the efficiency of heat production in CHPs and heat plants, as is the case in many publications. Due to the generation of two products with different energy values in the CHP: heat and electricity, „normal” energy efficiency does not objectively reflect the efficiency of the cogeneration system. Therefore, for many years, many authors have been looking for the objective efficiency of the CHP plant (cogeneration system). It can be concluded that none of these definitions are fully satisfactory. Therefore, a comparative method of assessment of cogeneration systems has been introduced, which has now taken the form of PES, i. e. primary energy savings defined in relation to separate generation of heat and electricity [9], [10], [14]. It is worth noting that in Poland this method has been used since the 1960s (Wagner [7], Marecki [3], Szargut [6]) using a measure equivalent to the PES, i. e. fuel savings.
PL
W artykule przedstawiona jest analiza współpracy miejskiego systemu ciepłowniczego (MSC) z wybranymi lokalnymi odnawialnymi źródłami energii (OZE), (szczególnie z wysokosprawnymi pompami ciepła zasilanymi energią elektryczną pochodzącą głownie z siłowni wiatrowych) zasilającymi nowo budowane budynki energooszczędne (BE). Celem pracy jest poszukiwanie wariantów współpracy MSC z OZE, które mogą przynieść nie tylko korzyści w postaci zmniejszenia zużycia nieodnawialnej energii pierwotnej (EP), ale również obniżenie kosztu ciepła loco odbiorca. Przedstawiono wyniki analizy techniczno-ekonomicznej, w której uwzględniono obniżenie parametrów wody w sieci ciepłowniczej współpracującej z węzłami cieplnymi nowo budowanych energooszczędnych budynków zasilanych z MSC oraz odnawialnych źródeł energii w tym pomp ciepła. Pełny opis danych wejściowych, obliczeń cieplno-bilansowych i ekonomicznych zawarty jest w pracy [1].
EN
The article presents an analysis of cooperation of the municipal district heating system (DHS) with selected local renewable energy sources (RES) (especially with high-efficiency heat pumps powered by the electricity coming mainly from wind farms) supplying new energy-saving buildings. The aim of the work is to look for options for DHS cooperation with RES, which can bring not only benefits in the form of reduction of non-renewable primary energy, but also lowering the cost of the heat for the customers. The results of the technical and economic analysis are presented, in which the reduction of water parameters in the district heating network cooperating with thermal centers of newly built energy-saving buildings supplied from DHS and RES, including heat pumps, was considered. A full description of the input data, thermalbalance and economic calculations are contained in [1].
PL
Dobór średnic rurociągów dla nowoprojektowanych i podlegających modernizacji sieci ciepłowniczych jest istotny, gdyż pozwala obniżyć koszty przesyłania ciepła w krajowych systemach ciepłowniczych. W celu wyznaczenia optymalnych średnich rurociągów sieci ciepłowniczej o złożonej strukturze rozgałęźno-pierścieniowej, opracowano wielostopniowy algorytm optymalizacyjny.
PL
Przeprowadzono analizę energetyczną równoległego (R) i szeregowego (S) połączenia skraplaczy w układzie cieplnym bloku energetycznego dużej mocy o parametrach nadkrytycznych, dla różnych wartości strumienia wody chłodzącej. Jako kryterium porównawcze przyjęto moc brutto bloku pomniejszoną o moc pomp wody chłodzącej. Dla określenia mocy brutto bloku stworzono jego model w programie Gate Cycle. Moc pomp wody chłodzącej określono z uwzględnieniem oporów przepływu w skraplaczach, rurociągach wody chłodzącej i różnicy poziomów wynikającej z doprowadzenia wody do chłodni kominowej. Wyniki szczegółowe zawierają tabele 3A i 3B. Zestawienie osiągów bloku dla dwóch konfiguracji skraplaczy przy różnych strumieniach wody chłodzącej zawiera tabela 4.
EN
Energy analysis of parallel (R) and serial (S) steam condensers connection in the supercritical power plants, for different values of cooling water mass flow rate, was performed. As a comparative criterion, the gross power of the power plant minus the power of the cooling water pumps was assumed. To determine the gross power of the power plant, its model was created in the GateCycle program. The power of the cooling water pumps is determined by taking into account the flow resistance in the steam condensers, the cooling water pipes and the difference in the level resulting from the supply of water to the cooling tower. Detailed results include tables 3A and 3B. The performance of the power plant for the two steam condensers configurations for different cooling water mass flow rates is shown in Table 4.
PL
W artykule przedstawiono analizę wybranych przedsięwzięć mogących przyczynić się do usprawnienia i optymalizacji pracy sieci w miejskich systemach ciepłowniczych zasilanych z elektrociepłowni i ciepłowni. Proponowane rozwiązania mogą być brane pod uwagę w ramach modernizacji i optymalizacji pracy sieci ciepłowniczej i systemów ciepłowniczych np. w ramach ISC. Artykuł jest streszczeniem pracy dyplomowej wykonanej w Wydziale Mechanicznym, Energetyki i Lotnictwa Politechniki Warszawskiej. Opiekunem był dr inż. Adam Smyk. Praca uzyskała pierwsze miejsce w konkursie na pracę inżynierską o tematyce energetycznej ‘2017 organizowanym przez VEOLIA Energia Warszawa S. A.
EN
The article presents an analysis of selected methods that can help to improve and optimize work in municipal District Heating Systems (DHS) in which heat is generated in a combined heat and power plant, or in a heating plant. The solutions proposed in the article may be taken into account when considering modernization or operational optimization of the DHS (eg when setting up smart DHS). This article is a summary of a bachelor thesis performed at the Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, and supervised by Adam Smyk. The thesis won the first prize in the contest for best bachelor thesis on energy organized by VEOLIA Energia Warszawa S. A. in 2017.
PL
W artykule przeprowadzono analizę energetyczną równoległego (R) i szeregowo-równoległego (S-R) połączenia skraplaczy w układzie cieplnym bloku energetycznego dużej mocy o parametrach nadkrytycznych. Rozpatrzono wpływ strumienia wody chłodzącej i zmiany powierzchni wymiany ciepła skraplaczy na moc bloku. Jako kryterium porównawcze przyjęto moc brutto bloku pomniejszoną o moc pomp wody chłodzącej. Dla określenia mocy brutto bloku stworzono jego model w programie Gate Cycle. Moc pomp wody chłodzącej określono z uwzględnieniem oporów przepływu w skraplaczach, rurociągach wody chłodzącej i różnicy poziomów wynikającej z doprowadzenia wody do chłodni kominowej. Wyniki szczegółowe przeprowadzonej analizy zawierają tabele 3A i 3B. Zestawienie osiągów bloku dla dwóch konfiguracji skraplaczy przy różnych strumieniach wody chłodzącej zawiera tabela 4.
EN
In the paper, parallel (R) and series-parallel (S-R) connection of steam condenser for the supercritical power plant was performed.. The influence of the cooling water mass flow rate and the change of the heat exchanger surface of the steam condensers on the performance of the power plant was considered. As a comparative criterion, the gross power of the unit minus the power of the cooling water pumps was assumed. To determine the gross power of the unit, its model was created in the Gate Cycle program. The power of the cooling water pumps is determined by taking into account the flow resistance in the steam condensers, the cooling water pipes and the difference in the level resulting from the supply of water to the cooling tower. Detailed results are provided in Tables 3A and 3B. The performance of the power plant for the two condenser configurations for different cooling water mass flow rate is shown in Table 4.
PL
Efektywność skraplacza jest funkcją współczynnika przenikania ciepła, powierzchni wymiany ciepła i strumienia pojemności cieplnej czynnika ogrzewanego. W literaturze można też znaleźć inne aproksymacyjne zależności, które są funkcją parametrów wlotowych i zawierają stałe współczynniki, które trzeba określic na podstawie danych pomiarowych. W artykule przedstawiono zależność na efektywność skraplacza w funkcji parametrów wlotowych i odpowiadających im parametrów dla stanu odniesienia. Proponowana zależność ma prostą postać i zawiera tylko parametry wejściowe i parametry w stanie odniesienia. Z analizy proponowanej zależności wynika, że efektywność skraplacza w otoczeniu parametrów odniesienia można przyjąć jako stałą, równą efektywności skraplacza dla warunków odniesienia. Przyjęcie stałej wartości efektywności skraplacza pozwala na przykład w prosty sposób określic temperaturę wylotową wody chłodzącej z zadowalającą dokładnością dla zmiennych warunków pracy dla szerokiego zakresu zmian parametrów wejściowych. Słuszność przyjętego założenia sprawdzono na podstawie danych uzyskanych z symulatora skraplacza dla bloku 200 MW i danych pomiarowych.
EN
Condenser effectiveness is a function of an overall heat transfer coefficient, heat transfer area, and the heat capacity rate of the heated fluid. In the literature, other approximate equations can be found being functions of inlet parameters and containing constant coefficients which have to be established based on measurement data. The present paper provides an equation for the condenser effectiveness being a function of parameters at the condenser inlet and ones that correspond to the inlet parameters and are relevant in a reference state. The proposed equation has simple form and contains only the inlet and reference parameters. An analysis of the proposed equation shows that the condenser effectiveness in the neighborhood of the reference parameters can be considered constant and equal to the condenser effectiveness in reference conditions. By using a constant value of the condenser effectiveness one can, for instance, easily determine cooling water outlet temperature with satisfactory accuracy for variable operating conditions and a wide range of changes in inlet parameters. This assumption was verified to be true based on data obtained from a simulator of a 200-MW unit condenser and on measurement data.
PL
W artykule dokonana weryfikacji doboru średnicy wewnętrznej rurek skraplacza na podstawie minimum liniowego oporu cieplnego i minimum liniowego strumienia generacji entropii. Weryfikację średnicy rurki przeprowadzono dla skraplacza bloku 200 MW, który w ramach retrofitu tych bloków również często podlega modernizacji. Z przeprowadzonej analizy wynika, że metoda minimum generacji strumienia entropii ma prostszą postać w porównaniu z metodą minimum liniowego oporu cieplnego, a ponadto ujmuje zarówno procesy wymiany ciepła, jak i oporów przepływu.
EN
The paper aims to verify the determination of the diameter of condenser tubes based on a minimum thermal resistance per unit length and a minimum entropy generation rate per unit length. The tube diameter was examined for a 200-MW unit condenser which is often upgraded in the course of retrofitting these units. The analysis shows that the method of the minimum entropy generation rate is simpler in form than that of the minimum thermal resistance per unit length and accounts both for heat transfer and flow resistance processes.
PL
Na podstawie minimalizacji generacji entropii wyznaczono optymalną wartość liczby Reynoldsa i średnicę rurki skraplacza bloku 200 MW. W modelu uwzględniono generację entropii w wyniku przepływu ciepła i oporów przepływu od strony wody chłodzącej. Na podstawie przeprowadzonej analizy otrzymano mniejszą średnicę wewnętrzną rurki średnio od 2 do 4 mm od aktualnej wartości równej 28 mm. Zmniejszanie średnicy rurki powoduje wzrost średniej prędkości wody chłodzącej, co skutkuje poprawą współczynników przejmowania i przenikania ciepła, zmniejszeniem powierzchni wymiany ciepła i wzrostem oporów przepływu.
EN
On the basis of entropy generation minimization determined the optimal value of the Reynolds number and tube diameter of power plant condenser 200 MW. The model includes the generation of entropy as a result of heat transfer and pressure drop from the cooling water. The analysis gave the smaller inside diameter of the tube of approximately average from 2 to 4 mm from the current value equal to 28 mm. Reducing the diameter of the tube increases the average speed of the cooling water, thereby improving the transfer coefficients and heat transfer reduction in the heat transfer surface area and increased flow resistance.
EN
Commonly used in Poland in heating and industrial applications, the JAD shell-and-tube heat exchangers are of counterflow type. Their performance can be represented by a counterflow heat exchanger effectiveness as a function of two parameters: NTU and C. In order to determine the NTU parameter, the overall heat transfer coefficient needs to be calculated. This requires additional relations including those used to determine the heat transfer coefficient for both fluids, and similarity numbers like the Nusselt, Reynolds, and Prandtl numbers. In order to determine the counterflow heat exchanger effectiveness, a set of linear and nonlinear equations describing the performance of the heat exchanger in off-design conditions must be developed. Because of the nonlinearity of the equations, the calculation must be performed in an iterative way. The greatest difficulty is to calculate the overall heat transfer coefficient; therefore, some approximate relations as functions of input parameters of the heat exchanger (temperatures and mass flow rates) have been created. One commonly used relation for the overall heat transfer coefficient has the form of a power function with four constant exponents. These exponents take specific values for different types of heat exchangers, but it is difficult to determine their physical interpretation. Therefore, in the paper a different relation for the overall heat transfer coefficient is given as a function of input variables, i.e.: temperatures at the heat exchanger inlet and mass flow rates of both fluids, taking into account reference parameters, with four constant coefficients that have a simple physical interpretation. The correctness of the proposed relation was checked on the basis of data obtained from the simulator of the JAD counterflow heat exchanger. The accuracy of the outlet temperature of heating fluid with regard to the proposed relation for the overall heat transfer coefficient was .
PL
Stosowane powszechnie w naszym kraju w ciepłownictwie a także w przemyśle wymienniki płaszczowo-rurowe JAD należą do grupy wymienników przeciwprądowych. Ich osiągi można przedstawić za pomocą efektywności wymiennika przeciwprądowego w funkcji dwóch parametrów: NTU i C. Aby wyznaczyć parametr NTU trzeba obliczyć współczynnik przenikania ciepła. W tym celu potrzebne są dodatkowe zależności między innymi służące do wyznaczenia współczynnika przejmowania ciepła od strony obu czynników, liczby podobieństwa Nusselta, Reynoldsa, Prandtla. W celu wyznaczenia efektywności wymiennika przeciwprądowego należy stworzyć zbiór zależności liniowych i nieliniowych opisujących osiągi wymiennika w zmienionych warunkach pracy (ZWP). Z powodu nieliniowości układu równań obliczenia trzeba przeprowadzić w sposób iteracyjny. Największe trudności nastręcza wyznaczenie współczynnika przenikania ciepła, dlatego tworzone są zależności aproksymacyjne w funkcji parametrów wejściowych do wymiennika (temperatur i strumieni mas). Jedną z powszechnie używaną zależności na współczynnik przenikania ciepła ma postać potęgową ze stałymi wykładnikami. Wykładniki te przyjmują określone wartości dla danego typu wymiennika, ale trudno jest określić ich interpretację fizyczną. Dlatego w artykule podano inną zależność aproksymacyjną na współczynnik przenikania ciepła w funkcji zmiennych wejściowych tj.: temperatury na wlocie do wymiennika dla obu czynników i strumieni mas z uwzględnieniem parametrów odniesienia z czterema stałymi współczynnikami, które mają prostą interpretację fizyczną. Poprawność proponowanej zależności sprawdzono na podstawie danych uzyskanych z symulatora wymiennika przeciwprądowego typu JAD. Dokładność temperatury wody grzejnej na wylocie z wymiennika z uwzględnieniem proponowanej zależności aproksymacyjnej na współczynnik przenikania ciepła wyniosła .
EN
The present paper analyses power and efficiency changes of a single-shaft gas turbine, with a power output of about 14 MW, in off-design conditions. In the analyzed period the gas turbine operated at constant rotational speed while air inlet temperature varied. Due to measurement difficulties, not all parameters (temperature, pressure, mass flow rate) at the characteristic points of the gas turbine are measured. In the case of the gas turbine under consideration, the following quantities were measured: temperature and pressure at the compressor inlet, pressure downstream the compressor, fuel mass flow rate, pressure and temperature at the turbine outlet, and the gas turbine power output. Using the proposed model, the unmeasured quantities were determined, i.e. air temperature downstream the compressor, combustion gas pressure and temperature at the turbine inlet, and the mass flow rates of the air and combustion gas. After the unmeasured quantities were determined, the values of isentropic and polytropic efficiencies were calculated for the compressor and turbine. In order to analyze changes in the efficiency of the gas turbine system, the polytropic efficiency of the compressor and turbine was expressed as a function of an entropy increment. A linear relation of the polytropic efficiency as a function of entropy generation for the turbine and a non-linear one for the compressor were obtained. Approximately linear relations between the compressor and turbine isentropic and polytropic efficiencies were obtained. The power output of the turbine, and the power used to drive the compressor in the load range of 85 to 100% were calculated.
PL
W artykule dokonano analizy pracy turbiny gazowej jednowałowej o mocy około 14 MW w zmienionych warunkach pracy. W okresie objętym analizą turbina gazowa pracowała przy stałej prędkości obrotowej, zmianie podlegała temperatura powietrza na wlocie. Ze względu na trudności pomiarowe nie wszystkie parametry (temperatura, ciśnienie, strumień masy) w charakterystycznych punktach w turbinie gazowej są mierzone. Dla analizowanej turbiny gazowej były mierzone następujące wielkości: temperatura i ciśnienie na wlocie do sprężarki, ciśnienie za sprężarką, strumień masy paliwa, ciśnienie i temperatura na wylocie z turbiny i moc elektryczna turbiny gazowej. Na podstawie zaproponowanego modelu wyznaczono niemierzone wielkości tj.: temperaturę powietrza za sprężarką, ciśnienie i temperaturę spalin na wlocie do turbiny, strumień masy powietrza i spalin. Po wyznaczeniu niemierzonych wielkości wyliczono sprawności wewnętrzne i politropowe dla sprężarki i turbiny. Dla analizy zmian sprawności układu turbiny gazowej wyrażono sprawność politropową sprężarki i turbiny w funkcji przyrostu entropii. Otrzymano liniową zależność sprawności politropowej w funkcji generacji entropii dla turbiny i nieliniową dla sprężarki. Otrzymano w przybliżeniu liniowe relacje pomiędzy sprawnościami sprężarki i turbiny – dla sprawności wewnętrznej i politropowej. Obliczono moc generowaną w turbinie gazowej i moc pobieraną przez sprężarkę w zakresie zmian obciążenia od 85 do 100%.
PL
W celu wyznaczenia optymalnej wartości średnicy wewnętrznej rurki skraplacza bloku energetycznego typu „church window” zastosowano minimalizację generacji entropii. W przyjętym modelu uwzględniono generację entropii w wyniku przepływu ciepła i oporów przepływu od strony wody chłodzącej. Obliczenia przeprowadzono dla dwóch zależności na współczynnik oporów przepływu z uwzględnieniem różnych wartości chropowatości rurki skraplacza. Wartość optymalnej średnicy zależy od przyjętej wartości chropowatości i wraz ze wzrostem chropowatości rośnie. Z przeprowadzonej analizy otrzymano dla analizowanego skraplacza optymalną wartość wewnętrznej średnicy rurki równą 20 mm. Podana wartość dotyczy górnego przedziału chropowatości, który można uznać za „bezpieczny” dla przeciętnych warunków eksploatacyjnych, uwzględniających średnie zanieczyszczenie rurek skraplacza.
EN
In order to determine the optimum value of the inner diameter of the condenser tube type of “church window” entropy generation minimization was used. In this model the entropy generation by heat transfer and pressure drop from the cooling water side were taken into account. Calculations were performed for the two relations of flow resistance and for the different values of roughness of the condenser tube. The value of the optimal diameter depends on the value of roughness and with the increase of roughness the value of the optimal diameter increases. From the performed analysis the optimal value of the inner tube diameter of 20 mm was obtained. The specified value is for the upper range of roughness, which can be considered as “safer” for average operating conditions, taking into account the average fouling of the condenser tubes.
PL
Ponad 200 krajowych systemów ciepłowniczych o łącznej mocy przekraczającej 50 000 MW ma łączną długość sieci ciepłowniczych blisko 20 000 km. W wielu z tych systemów sieć ma złożoną strukturę rozgałęźno-pierścieniową. Realizacja takiej struktury sieci zwiększa pewność zasilania odbiorców, ale równocześnie zwiększa nakłady inwestycyjne na budowę sieci, a więc i koszty przesyłania ciepła. Modernizacja i unowocześnianie systemów ciepłowniczych w Polsce wskazuje między innymi na potrzebę racjonalizacji kosztów przesyłania ciepła, na które składają się koszty stałe od nakładów inwestycyjnych na sieć, armaturę i przepompownie sieciowe oraz eksploatacji i obsługi sieci, w tym koszty pompowania wody sieciowej i koszty strat ciepła. Jednym ze sposobów spełnienia tej potrzeby jest dobór optymalnej średnicy rurociągów sieci ciepłowniczej. W artykule [2] przedstawiono algorytm i wyniki optymalizacji prostych pojedynczych odcinków sieci ciepłowniczej. Taka optymalizacja ma szereg ograniczeń, m.in. nie pozwala uwzględnić w sposób właściwy zróżnicowanej wartości ciśnienia dyspozycyjnego, określającego dopuszczalne spadki ciśnienia w poszczególnych fragmentach sieci. W artykule [3] przedstawiono zagadnienie optymalizacji średnicy nominalnej DN rurociągów sieci cieplnej w układzie rozgałęźno-pierścieniowym w systemie ciepłowniczym zasilanym z elektrociepłowni. Zaprezentowano również opracowany algorytm optymalizacyjny i omówiono sposób jego działania na przykładowym fragmencie struktury sieci ciepłowniczej. Niniejszy artykuł jest kontynuacją problematyki poruszanej w [3] i zawiera wyniki dla kilku wybranych struktur sieci ciepłowniczej wraz z analizą wpływu średnicy odcinków pierścieniowych na wyniki optymalizacji.
EN
Over 200 Polish DH systems with total heat capacity of more than 50000 MW contains 20 000 kilometers of DH networks. Many of these systems have a complex structure like manifold-ring. Use of this network structure increases the reliability of the power supplies, but it also increases the cost of investment in the network, and therefore the cost of heat transport. Upgrading and modernization of DH systems in Poland shows the need for rationalization of the cost of heat transport, which include the fixed costs of investment in the network, costs of fittings and pumping stations and costs of operation and maintenance of the network, including network water pumping costs and the cost of heat losses. One of the ways of fullfilling this need is the selection of optimal pipelines diameter for heating network. The article [2] presents an algorithm and results of optimization of simple parts of DH systems. This optimization has a numerous limitations i.e. it does not allow to properly take into account the allowed pressure drops in particular networks fragments. The article [3] presents the problem of optimization of diameter of pipelines in the manifold-ring DH system. The optimization algorithm, the description of its operation is presented and the analysis of the results is performed for a particular variant of the DH system structure. This article is continuation of [3] and contains the results for a few selected DH system structures and the analysis of the impact of the diameter of the ring segments on optimization results.
PL
W Polsce systemy ciepłownicze pokrywają zapotrzebowanie na ciepło ponad 40% mieszkańców kraju. Łączna długość sieci wchodzących w ich skład to prawie 20 000 km, z czego 1700 km należy do największego w kraju systemu warszawskiego. Ciepłownictwo w naszym kraju, podobnie jak na całym kontynencie, będzie ulegać licznym modyfikacjom zmierzającym do poprawy stanu środowiska i efektywności energetycznej. Skala rozwoju systemów ciepłowniczych w Polsce wskazuje między innymi na potrzebę racjonalizacji kosztów przesyłania ciepła, na które składają się między innymi koszty stałe od nakładów inwestycyjnych na sieć i armaturę oraz eksploatacji i obsługi sieci, a także koszty pompowania i koszty strat ciepła. Jednym ze sposobów spełnienia tej potrzeby jest dobór optymalnej średnicy rur sieci ciepłowniczej. W artykule [2] przedstawiono algorytm i wyniki optymalizacji prostych pojedynczych odcinków sieci ciepłowniczej. Taka optymalizacja ma wiele ograniczeń, m.in. nie pozwala na uwzględnienie dopuszczalnych spadków ciśnienia w poszczególnych fragmentach sieci. Celem artykułu jest przedstawienie zagadnienia optymalizacji nominalnych średnic DN rur sieci rozgałęźno-pierścieniowej w systemie ciepłowniczym zasilanym z elektrociepłowni. Zaprezentowano również proces optymalizacji, omówiono sposób jego wykorzystania i analizę wyników obliczeń wykonanych za pomocą algorytmu przykładowego wariantu fragmentu sieci ciepłowniczej.
EN
Existing district heating systems in Poland are covering the heat demand of over 40% of citizens. The total length of district heating networks is over 20 000 km with 1700 km belonging to the Warsaw DH system. Heating system in our country, as all over Europe, will be constantly modified to lower the ecological impact and to improve the energy efficiency. The scale of heating systems development in Poland shows that the rationalization of heat transport costs that are: fixed costs of investments on the network, fittings, and network operation; cost of pumping; cost of heat losses. One of the ways of fulfilling this need is to choose the optimal pipelines diameter for heating network. In article [2] is presented the algorithm and the results of optimization of simple singular parts of heating networks. This optimization has a numerous limitations i. e. it does not allow to properly take into account the allowed pressure drops in particular networks fragments. This article is presenting the topic of nominal diameter DN of heating network pipelines in the manifold-ring setting while being supplied by the CHP plant. The optimization algorithm, the description of its operation is presented and the analysis of the results is performed for a particular variant of the heating network structure.
EN
The paper presents an analysis of relations describing entropy generation in a condenser of a steam unit. Connections between entropy generation, condenser ratio, and heat exchanger effectiveness, as well as relations implied by them are shown. Theoretical considerations allowed to determine limits of individual parameters which describe the condenser operation. Various relations for average temperature of the cold fluid were compared. All the proposed relations were verified against data obtained using a simulator and actual measurement data from a 200 MW unit condenser. Based on data from a simulator it was examined how the sum of entropy rates, steam condenser effectiveness, terminal temperature difference and condenser ratio vary with the change in the inlet cooling water temperature, mass flow rate of steam and the cooling water mass flow rate.
PL
W literaturze można znaleźć szereg modeli do opisu osiągów turbiny gazowej w zmienionych warunkach pracy (off-design). W modelach tych na podstawie przyjętych wartości sprawności wewnętrznych lub politropowych dla sprężarki i turbiny wylicza się temperaturę powietrza za sprężarką i temperaturę spalin przed turbiną a następnie sprawność i moc całego układu. Dla założonych sprawności analizuje się również wpływ poszczególnych zmiennych na osiągi turbiny gazowej, np. jaki wpływ ma temperatura powietrza na sprawność i moc turbiny gazowej. Tworzone są też dokładniejsze modele matematyczne turbin gazowych uwzględniające charakterystyki sprężarek i turbin. Ze względu na trudności w pozyskaniu kompletnych charakterystyk sprężarki i turbiny dla danego typu turbiny gazowej postanowiono na podstawie mierzonych parametrów wyznaczyć sprawność sprężarki i turbiny w zmienionych warunkach pracy. Zwykle trudno jest uzyskać pełny komplet parametrów pozwalających na wyznaczenie dokładnych charakterystyk sprawnościowych sprężarki i turbiny. Dysponując takimi niekompletnymi danymi pomiarowymi dla jednowałowej turbiny zaproponowano uproszczony model matematyczny do wyznaczenia sprawności wewnętrznej sprężarki i turbiny w zmienionych warunkach pracy. Otrzymano liniową zależność pomiędzy sprawnością sprężarki i turbiny, z której wynika, że wzrostowi sprawność sprężarki towarzyszy spadek sprawność turbiny i na odwrót wzrost sprawności turbiny powoduje spadek sprawności sprężarki.
EN
In the literature one can find a number of models describing the performance of a gas turbine in off-design conditions. In these models air temperature after the compressor, the exhaust gas temperature before the turbine and the efficiency and power of the entire system are calculated based on internal or polytropic efficiencies assumed for the compressor and the turbine. For the assumed efficiencies the impact of individual variables on the gas turbine performance is also analyzed, for example, how the air temperature affects the efficiency and power of the entire gas turbine. More accurate mathematical models of the gas turbine, taking into account the characteristics of compressors and turbines, are also created. Due to the difficulties in obtaining complete compressor and turbine characteristics for the particular type of gas turbine, it was decided to determine the efficiencies of the compressor and turbine in off-design conditions on the basis of measured parameters. Usually, it is difficult to get a full set of parameters in order to determine the precise efficiency characteristics of the compressor and turbine. With such incomplete measurement data for a single-shaft gas turbine, a simple mathematical model was proposed to determine the internal efficiencies of the compressor and turbine in the off-design conditions. A linear relation between the internal efficiencies of the compressor and turbine was obtained, showing that an increase in the internal efficiency of the compressor is accompanied by a decrease in the internal efficiency of the turbine and vice versa: an increase in the internal efficiency of the turbine causes a decrease in the internal efficiency of the compressor.
PL
W trakcie eksploatacji skraplaczy może dochodzić do zmiany warunków ich pracy, co zwykle prowadzi do obniżenia mocy bloków energetycznych. Pogorszenie się warunków wymiany ciepła może wynikać z odkładania się zanie-czyszczeń zawartych w wodzie chłodzącej na powierzchni wymiany ciepła lub ze zwiększonej ilości gazów inertnych (powietrza). Oba wspomniane zjawiska prowadzą do podwyższenia ciśnienia i temperatury pary w skraplaczu. Do oceny wpływu tych dwóch niekorzystnych zjawisk można wykorzystać różnicę pomiędzy mierzonym i referencyjnym ciśnieniem lub odpowiadającą zmianie ph różnicę temperatury kondensacji pary. W celu otrzymania zależności na temperaturę referencyjną w zmienionych warunkach pracy stworzono symulator skraplacza bloku energetycznego. Na podstawie danych otrzymanych z symulatora skraplacza zaproponowano prostą zależność do opisu temperatury nasycenia (ciśnienia pary) jako funkcji trzech niezależnych parametrów mających największy wpływ na pracę skraplacza: temperatury i strumienia masy wody chłodzącej na wlocie do skraplacza oraz strumienia masy pary. Proponowaną zależność zastosowano do oceny stanu technicznego skraplacza 200 MW pracującego w jednej z krajowych elektrowni. W przykładowej analizie, zamieszczonej w artykule, na podstawie danych pomiarowych z początku roku dokonano walidacji modelu dla analizowanego skraplacza. Następnie zbadano różnice między mierzonym i wyznaczonym z proponowanej zależności ciśnieniem (temperaturą) dla rzeczywistych danych z końca roku. Ponieważ różnice wartości temperatury na początku i pod koniec roku mieściły się w tym samym przedziale ± 0,8 oC można stwierdzić, iż nie doszło do pogorszenia się warunków pracy skraplacza.
EN
During operation of steam condensers a change in their working conditions may occur, which usually leads to a decreased performance of a power plant. The degradation of the heat transfer conditions may be due to deposition of impurities contained in the cooling water on the heat transfer surface or to increased amounts of inert gases (air). Both of these phenomena lead to an increase in steam pressure and temperature in the steam condenser. To assess the impact of these two negative phenomena, the difference between the measured and the reference pressure, or the difference in steam condensation temperatures as corresponding to a change in ph, can be used. In order to obtain the relation for the reference temperature in the off-design conditions, a simulator of the steam condenser for a power plant was created. On the basis of data obtained from a steam condenser simulator, a simple relation to describe the saturation temperature (steam pressure) was proposed as a function of three independent parameters that have the greatest impact on the performance of the steam condenser: the temperature and mass flow rate of cooling water at the inlet to the steam condenser and the mass flow rate of steam. The proposed relation was used to evaluate the technical condition of a 200-MW steam condenser operating in one of domestic power plants. In the sample analysis, published in the article, the model for the analyzed steam condenser was validated against measurement data from the beginning of a year. Next, the differences were calculated between the pressures (temperatures) as measured and obtained from the proposed relation using the actual data from the end of the year. As the differences between the temperatures at the beginning and at the end of the year are in the same range of ±0.8°C, it can be concluded that the working conditions of the steam condenser did not degrade.
PL
Skraplacz jest ważnym elementem układu cieplnego, w którym odprowadzane jest ciepło skraplania do otoczenia. Temperatura i strumień masy wody chłodzącej na wlocie do skraplacza ulegają zmianie w trakcie eksploatacji. Zmiany tych parametrów wpływają na wielkość ciśnienia pary, co ma znaczący wpływ na sprawność i moc generowaną w części niskoprężnej (NP) turbiny. Na podstawie danych otrzymanych z symulatora skraplacza i danych rzeczywistych dla bloku 200 MW dokonano analizy, jak temperatura wody chłodzącej, strumień masy wody chłodzącej i strumień masy pary wpływają na: efektywność cieplną skraplacza, strumień przekazywanego ciepła, ciśnienie pary w skraplaczu oraz sprawność i moc części niskoprężnej turbiny. Do oceny pracy wymienników ciepła używana jest efektywność cieplna ε, która powinna osiągać, dla projektowanych parametrów wokół wymiennika, wartość maksymalną. W przypadku wymienników ze strefą kondensacji np. w podgrzewaczach regeneracyjnych maksymalna wartość ε oznacza uzyskanie maksymalnej wartości temperatury czynnika ogrzewanego na wylocie. Ponieważ rola skraplacza (uzyskiwanie możliwie najniższej próżni) jest nieco odmienna od roli klasycznego wymiennika ciepła, rosnąca wartość ε nie oznacza lepszych osiągów skraplacza. Jeszcze większa rozbieżność występuje w ocenie układu skraplacz – część NP turbiny. Zaproponowano zatem do oceny osiągów skraplacza i części NP turbiny używać parametru zwanego skutecznością: δ=(1- ε)=δtmin /ΔTmax. Ponadto dla celów praktycznych podano zależność (8) na moc części NP turbiny w funkcji strumienia masy wody chłodzącej i temperatury wody chłodzącej na wlocie do skraplacza. Znajomość charakterystyki części NP turbiny i charakterystyki skraplacza pozwala optymalizować warunki pracy układu skraplacz – część NP turbiny.
EN
A steam condenser is an important component of a power plant, in which the heat of condensation is discharged to the environment. The temperature and mass flow rate of cooling water at the inlet to the steam condenser vary during operation. Changes in these parameters affect the steam pressure, which has a significant impact on the efficiency and power generated in the low-pressure (LP) part of the steam turbine. On the basis of data obtained from a simulator of the steam condenser and the actual measurement data from a 200-MW power plant, an analysis was performed of how the cooling water temperature at the inlet to the steam condenser, the cooling water mass flow rate, and the steam mass flow rate affect the heat effectiveness of the steam condenser, the flow of the heat transferred, the steam pressure in the condenser, and the efficiency and power of the LP part of the steam turbine. For the evaluation of the heat exchanger performance, the heat effectiveness ε is used, which, for the parameters designed around the heat exchanger, should reach the maximum value. In the case of heat exchangers with a condensation zone, e.g. in a regenerative heat exchanger, the maximum value of the heat effectiveness ε means obtaining the maximum value of the heated fluid temperature at the outlet. Since the role of the steam condenser (providing the lowest possible vacuum) is slightly different from the role of a classical heat exchanger, increasing the value of ε does not mean better performance of the steam condenser. An even greater disparity exists in the evaluation of the performance of a system comprising the steam condenser and the LP part of the steam turbine. It was therefore suggested to evaluate the performance of the steam condenser and the LP part of the steam turbine using the parameter of efficacy, defined as: δ=(1-ε)=δtmin /ΔTmax. Moreover, for practical purposes, the relation (8) was given for the power of the LP part of the steam turbine as a function of the cooling water mass flow rate and its temperature at the inlet to the steam condenser. Knowing the characteristics of the LP part of the steam turbine and of the steam condenser, one can optimize operating conditions of the system consisting of the steam condenser and the LP part of the steam turbine.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.