Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The impact of the kinematic parameters of bounce and pitch motions of wheeled vehicles’ (WVs’) sprung mass (SM) with non-linear power characteristics of the cushion system on vehicles handling is studied. The dependence of the critical value of the dynamic steering angle of directive wheels on the amplitude of bounce and pitch motions and the kinematic parameters of motion is developed. It is proven that the limit value of the dynamic steering angle of directive wheels is reduced during acceleration, and vice versa (it increases during braking, while the bounce and pitch motions are significantly reduced).
EN
The aim of paper is to study the solution of the problem of nonlinear transverse vibrations of elastic elongated body under the force of resistance in unbounded domain. Such problems have applications in various technical systems - vibration of pipelines, railways, long bridges, electric lines, optical fibers. Unboundedness of the area creates more fundamental difficulties in the study of the problem. For the considered models of nonlinear oscillations have no general analytical techniques for determining the dynamic characteristics of the oscillatory process. Therefore it is sugges ted to use qualitative methods of the theory of nonlinear boundary value problems to obtain correct problem solution conditions (existence and uniqueness of the solution). In the paper conditions of the correctness of the solution of mathematical model for these nonlinear systems (sufficient conditions of the existence and uniqueness in the class of locally integrable functions) are obtained. Methods of qualitative study of semi-infinite cable vibrations under the forces of resistance based on general principles of the theory of nonlinear boundary value problems - method of monotony and Galerkin method. Scientific novelty of the work lies in particular in the generalization of methods of studying nonlinear problems on a new class of oscillatory systems In unbounded domains, justifying the correctness of the solution with specified mathematical model, which has practical applications in real engineering oscillatory systems. The technique allows not only for proving the correctness of the model solution, but also has an opportunity in its study to apply various approximate methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.