Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Computational modeling for predicting the steady state creep behavior is presented in complex plane for reinforced materials by complex variable method. Both the fiber and matrix simultaneously creep at elevated temperatures and loading. We suppose that one dimension of the short fiber is small enough in comparison with the other two (see Fig. 1). In this formulation, plane stress state is used. Finally, displacement rate behaviors are predicted using compatibility, equilibrium, constitutive, and governing equations by complex variable method. One of the considerable applications of the method is in nano-composites analysis in elasticity or plasticity research.
EN
A new mathematical insight based on logarithmic, polynomial mapping functions (MF), and dimensionless parameter (DP) models is presented for determination of some unknowns in the steady state creep stage of short fiber composites subjected to axial loading. These unknowns are displacement rate in outer surface of the unit cell, shear and equivalent stresses at interface and outer surface of the unit cell, and average axial stress in fiber. Dimensionless parameter technique is presented for determination of displacement rate and equivalent stress in outer surface of the unit cell. However, the polynomial mapping function is presented for determination of average axial stress in fiber. Most important novelty of the present research work is determination of the mentioned unknowns in steady state creep by DP and MF techniques without using the shear-lag theory unlike the previous researches. Good agreements are found among the new approaches and previous analytical results based on the shear-lag theory and also numerical solutions (FEM) for predicting the steady state creep behavior in short fiber composites.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.