Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Analyses of the melt cooling rate in the melt-spinning process
EN
Purpose: Rapid solidification (RS) of metallic melts is important for the development of the advance metallic materials, because enables the production of new alloys with superior properties according to conventionally treated alloys. In practice it turned out, that single roll melt spinning process has one of the highest melt cooling rates among all continuous casting processes. But, because very short solidification time and movement of the melt and substrate, melt cooling rate is very difficult to measure with confidence. Primary goal of our work was to determine the limits of cooling rate over the ribbon thickness and to outline, which property or typical feature of the process has the greatest influence on cooling rate of the melt. Design/methodology/approach: On the basis of developed mathematical model, a computer program was made and used for melt cooling rate calculation in the melt-spinning process. Findings: The calculations show that distance from the contact surface in relation to the thermal properties of the melt, chilling wheel material and contact resistance between metal melt and chilling wheel have the greatest influence on melt/ribbon cooling rate. In the case of continuous casting, significant “long term” surface temperature increase may take place, if the wheel is not internally cooled. Research limitations/implications: Influence of the melt physical properties, chill wheel material, contact resistance and cooling mode of the chill wheel on melt cooling rate are outlined. Practical implications: Practical limits of melt cooling rate over ribbon thickness are outlined and directions for the chill wheel cooling system design are indicated. Originality/value: Comparison between cooling rates calculated at various thermal resistance assumptions of particular constituents is outlined. New method for determining contact resistance through variable heat transfer coefficient is introduced which takes into account physical properties of the casting material, process parameters and contact time/length between metal melt/ribbon and substrate and enables cooling rate prediction before the experiment execution. In the case of continuous casting, heat balance of the melt-spinning process is calculated and influence of the chill wheel cooling mode on cooling rate of metallic ribbon is analyzed.
2
Content available remote Modeling of heat transfer in the cooling wheel in the melt-spinning process
EN
Purpose: In the case of continuous casting of metal ribbons with the melt-spinning process on the industrial scale, larger quantity of melt could lead to a slow excessive warming of the chilling wheel, which would further lead to solidification of a ribbon at non-uniform conditions and increased wearing of the wheel. Primary goal of our work was to determine to what extent the release of heat during contact of the melt/ribbon on the circumferential surface of the chilling wheel affect its surface temperature rise, and inversely how much elevated temperature of the chill wheel surface affects on metal ribbon cooling rate and its solidification velocity. Design/methodology/approach: On the basis of developed mathematical model, a computer program was made and used for analyses of heat transfer in the melt-spinning process. Findings: The calculations show that contact resistance between metal melt and chilling wheel has a great influence on melt/ribbon cooling and chill wheel heating rate, and must not be neglected in numerical calculations, even if its value is very low. In the case of continuous casting, significant “long term” surface temperature increase may take place, if the wheel is not internally cooled. But inner cooling is effective only if wheel casing thickness is properly chosen. Research limitations/implications: Influence of process parameters and chill wheel cooling mode on cooling and solidifying rate over ribbon thickness are outlined. Practical implications: Directions for the chill wheel cooling system design are indicated. Originality/value: New method for determining contact resistance through variable heat transfer coefficient is introduced which takes into account physical properties of the casting material, process parameters and contact time/length between metal melt/ribbon and substrate and enables cooling rate prediction before the experiment execution. In the case of continuous casting, heat balance of the melt-spinning process is calculated and influence of the chill wheel cooling mode on cooling rate of metallic ribbon is analyzed.
3
Content available remote Inductive heating and quenching of planetary shafts
EN
Purpose: High mechanical and temperature cyclic loading of the final products for automotive, construction, transport and agriculture mechanization industry, demands sufficient mechanical properties of all of their components during its exploitation. Majority of the components is made from steel, by different cold forming processes. Their main demanded characteristics are surface wear resistance and fatigue strength under pulsating stress in combination with cyclic temperature loading, which could be achieved only by appropriate heat treatment. Design/methodology/approach: In the experimental part of our work, the efficiency of the combined inductive heating and water quenching heat treatment and quality of the planetary shafts were analyzed, with the use of thermographic analysis, hardness measurements, and metallographic examination. Findings: Combination of inductive heating and water quenching is the most effective heat treatment process of carbon steel planetary shafts for the diesel engine starters. Research limitations/implications: Long life span of carbon steel planetary shafts it's essential for their economical production. The replacement of starter is expensive from both: money and working time point of view. Practical implications: Surface temperature measurements during the inductive heating process were realized in the industrial environment. The intensity and homogeneity of the planetary shaft surface temperature field was measured by thermographic camera. Originality/value: On the base of theoretical knowledge and measurements, a mathematical model for temperature conditions determination in the shaft during the entire process of heating and quenching was carried out. On the basis of developed mathematical model a computer program was worked out, and used for analyses and optimization of planetary shafts induction hardening process.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.