By combining geomatics techniques and remote sensing data, this paper gives a thorough investigation of the forest fires that occurred close to Berkane, Morocco, from July 16 to July 18, 2023. The goals of the study included spatiotemporally tracking the propagation of active forest fires during the fire season, and to accurately map the burned area and detect changes in vegetation cover caused by the fire. A detailed fire severity mapping of the impact of the fire on the forest was made by this integrated approach. We used remote sensing data from various sources, including NASA FIRMS data for the fire period and Sentinel-2 satellite imagery acquired two days before and one day after the fire, to accomplish these goals. In terms of estimating the burned area, our study produced important findings. We were able to estimate 3508.12 hectares, 3517.98 hectares, and 3113.63 hectares using satellite imagery with dNBR, dNDVI, and supervised classification, respectively. These results offer considerable potential for directing post-fire management plans and preserving this critically important forest area. The integration of FIRMS data, Sentinel-2 images, and GIS in our research highlights the need of using this coordinated strategy to conduct an accurate and thorough evaluation of forest fires in the area. In addition to improving our understanding of forest fire dynamics, this study emphasizes the value of using cutting-edge geospatial and remote sensing techniques in attempts to manage wildfires and save the environment. The findings of this study will contribute significantly to guiding post-fire management strategies, thus promoting the conservation of the vital forest area.
This study concerns a Saharan wetland of southern Morocco, the Imlili Sebkha, located south of the Dakhla city. Considered among the rare permanent saharan sebkhas, it is recharged by episodic surface water supplies from an endorheic hydrographic network and by the unconfined aquifer, which emerges permanently through tens of shallow natural cavities. Using satellite data (DEM and rainfall), supplemented by field observations, an analysis of surface water supplies is carried out in this article. Due to the low slopes and the almost generalized silting of the catchment area, most of the rainwater is evaporated or recovered by the phreatic aquifer. Only a small proportion would arrive to the wetland, which would come from the surroundings of the sebkha. Nevertheless, these low inputs can flood a large part of the wetland, including the groundwater cavities, especially during the biggest autumn storms.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.