Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On micro-damage in hot metal working. P. 2 Constitutive modelling
EN
Damage constitutive equations are formulated to model the evolution of grain boundary and plasticity-induced damage for free-cutting steels under hot forming conditions. During high temperature, high strain rate deformation, material degradation has characteristics of both creep damage at grain boundaries, and ductile damage surrounding hard inclusions. This has been experimentally observed and is reported in the companion paper. This paper describes the development of unified viscoplastic-damage constitutive equations, in which the nucleation and growth of both damage types are considered independently. The effects of deformation rate, temperature, and material microstructure on damage evolution are modelled. The proposed damage evolution equations are combined with a viscoplastic constitutive equation set, enabling the evolution of dislocation hardening, recovery, recrystallisation, grain size, and damage to be modelled. This set of unified, mechanism-based, viscoplastic damage constitutive equations is determined from experimental data of a freemachining steel for the temperature range 1173- 1373 K. The fitted model is then used to predict damage and failure features of the same material tested using a set of interrupted constant strain rate tests. Close agreement between the predicted and experimental results is obtained for all the cases studied.
2
Content available remote On micro-damage in hot metal working. Part 1: Experimental investigation
EN
An experimental programme was defined and performed to investigate the characteristics of micro-damage for a plain CMn and a free machining steel under hot forming conditions. To investigate damage locations - at grain boundaries and around second phase inclusions - a series of constant strain rate tests were carried out on the free machining steel, which contained manganese sulphide inclusions. Specimens from both materials were strained to failure under tension using a Gleeble material simulator at a constant temperature of 1273 K, with strain rates = 0.01-10 s-1. The damage characteristics of the two different steel microstructures was analysed through microstructural examinations of the tested specimens. Particular attention is focussed on damage locations and features. To investigate the recovery of materials between the intervals of hot deformation, a series of two-step tensile tests were carried out at 1273 K and 10 s-1. The two-step specimens were initially deformed to a strain varying from 0.3-0.7, held for varying recovery periods of 0.3-10 s, then stretched to failure. Flow stress features and strains to failure during the second stage of deformation were analysed with respect to different recovery periods and strain levels at the first stage of deformation. The damage features discovered from the experimentation and microstructural examination provide theoretical evidence to form unified viscoplastic damage constitutive equations for hot forming of free machining steels, which are described in the companion paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.