Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Thin-walled structures are very popular in industries, especially in the field of shipbuilding. There are many types of equipment and structures of ships, which are made up of thin-walled structures such as hull, deck and superstructure. Therefore, the analysis and understanding of the static and dynamic characteristics of a thin-walled structure are very important. In this article, we focus on vibration analysis of a typical thin-walled structurerectangular plate, a basic structure of the hull. Vibration analysis of a rectangular thin plate is conducted by two methods: numerical modelling method of the finite element on Patran-Nastran software platform and experimental method implemented in the laboratory of Gdynia Maritime University. Thin rectangular plate is fixed one end by four clamping plates and is modelled with finite elements and different meshing densities. The numerical model of thin rectangular plate is divided into four cases. Case 1, thin rectangular plate, and clamping plates are modelled with two-dimensional elements. Case 2, the rectangular thin plate is modelled with two-dimensional elements; the clamping plates are modelled with three-dimensional elements. Case 3, both the rectangular thin plate and clamping plates are modelled with three-dimensional elements. Case 4, the rectangular thin plate, and clamping plates are modelled with three-dimensional elements with larger mesh density to increase the accuracy of the calculation results. After that, the results of vibration analysis according to the numerical modelling method on Patran-Nastran software platform for these cases were compared with the measurement results. From there, assess the accuracy of analysis results of selected numerical model methods and the ability to widely apply this numerical model method to other marine structures
EN
The article presents a methodology of non-destructive diagnostic vibratory tests of welded plates with geometrical parameters that classify them into a group of thin-walled panels. On the basis of such plates, most ship constructions are created. In previous works, the authors dealt with the study of welded joints in plates with significant thicknesses and developed for them a number of methods for assessing the quality of welded joints. Vibrodiagnostics is a NDT method that allows the use of a variety of techniques and tools. It enables measurements to be made in both a contact and non-contact way depending on the requirements of the structure and the environment. Vibrodiagnostic method is one of the most modern NDT methods, which uses modern measurement tools and computer analysis of data. On the basis of the developed methods, the authors intend to verify their application to plates from real welded constructions, which will be performed in typical shipyard conditions by welders. Such tests are important due to their use for the construction of a real SHM ship construction monitoring system. These methods allow for the examination of the condition of ships’ structural plates and can detect defects in welded joints that prevent ships from operating under severe sea conditions. The article presents the laboratory stand, the sensor layout, results, and their initial analysis.
EN
The ship hull vibration has a great impact on the performance, safety of the devices, structures, and the sailor's comfort when working on the ship. With increases in ship sizes and speeds, shipboard vibration becomes a significant concern in the design and construction of ships. Therefore, designing a ship without any excessive vibration is an important issue and should be studied through analysis right in the design phase. To ensure minimum vibration in a proposed new design; avoid damage to structures, machinery or equipment (mechanically suitable); meeting the requirements of the crew's living environment and working conditions. The ship's natural vibrations are determined to right from the design stage, which will help ship designers and structures avoid dangerous resonance areas. In this study, a three-dimensional finite element model representing the entire ship hull, including the deckhouse and machinery propulsion system, has been developed using numerical modelling implemented in Patran-Nastran software for local and global vibration analyses of the container ship 2000 TEU. Vibration analyses have been conducted under two conditions: free– free (dry) and in-water (wet). The wet analysis has been implemented using Mfluid elements in Nastran software. Because of the global ship free vibration analysis, global natural frequencies and mode shapes have been determined. Combined with the frequency of the main engine and the propeller, the resonant regions with higher frequencies are determined by the resonant graph of the hull. The application of the finite element method for ship vibration analysis shows the optimal of numerical modelling method compared to other traditional methods. This will help other technical problems to be solved with the support of the finite element method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.