An integrated study based on calcareous nannofossils, organic-walled dinoflagellate cysts, and ammonites from the Washtawa and Kanthkot formations of the Wagad Uplift have allowed a detailed documentation of the stratigraphic position of these formations within the Oxfordian and Kimmeridgian sediments of the Kachchh Basin, western India. The nannofossil assemblages from the lower part of the Nara Shale Member exposed in the Nara and Washtawa domes, the Kanthkot Ammonite Beds along the Trambau River section, and the Patasar Shale Member exposed along the Trambau River section and the Patasar Tank section in the eastern part of the Wagad Uplift belong to the NJ 14 Cyclagelosphaera margerelli Zone of the Early Oxfordian, the NJ 15a Lotharingius sigillatus Zone of the Middle Oxfordian, and the NJ 15b Cretarhabdus conicus of Early Kimmeridgian age, respectively. Zonation schemes, based on calcareous nannofossils, dinoflagellate cysts, and ammonites were calibrated highlighting their biostratigraphic potential. These studies may represent a reference biochronology for Oxfordian–Kimmeridgian age strata applicable to the Tethyan realm of which India was a part during Late Jurassic times.
Two dinosaur footprints: Eubrontes cf. giganteus and Grallator tenuis, both attributed to theropods, have been found in the Lower Jurassic Thaiat Member of the Lathi Formation at the Thaiat ridge, near Jaisalmer in western Rajasthan, India. The footprints were left in sediments of a tidal origin, located in profile a few meters above a marked transgressive/flooding surface. They show different states of preservation – the smaller Grallator tenuis represents a well-preserved concave epirelief footprint on the upper surface of a sandstone containing nerineid gastropod shells, while the bigger Eubrontes cf. giganteus footprint shows a rare state of preservation as a positive epirelief on the top of a calcareous sandstone bed, where recent erosion exposed the footprint cast by removing the mud above and around the footprint. The Thaiat ridge section has been amended in its lower part, to indicate the marked transgressive surface. Geochemical analyses and calculated weathering indices (such as CIA) show that the hinterland climate was seasonal to semi-arid during deposition of that part of the succession.
Several new specimens of ammonites from the Oxfordian and Kimmeridgian of Kachchh, western India, are described and illustrated. The Oxfordian ammonites ?Subdiscosphinctes Malinowska, Perisphinctes Waagen, Dichotomoceras Buckman, and ?Larcheria Tintant, all from Bharodia in the Wagad Uplift, enable tentative biochronostratigraphic correlations with the uppermost Middle Oxfordian up to the lower Upper Oxfordian of the unified Submediterranean zonation, whereas the Kimmeridgian ammonites Streblites Hyatt, “Orthosphinctes” Schindewolf, Torquatisphinctes Spath, Pachysphinctes Dietrich, Katroliceras Spath, Aspidoceras Zittel, and Schaireria Checa reconfirm a stratigraphic gap embracing incompletely known parts of the uppermost Oxfordian and the Lower Kimmeridgian as known from the ammonite records of the Kachchh Mainland of the Kachchh Basin.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Abduction is a form of inference that supports hypothetical reasoning and has been applied to a number of domains, such as diagnosis, planning, protocol verification. Abductive Logic Programming (ALP) is the integration of abduction in logic programming. Usually, the operational semantics of an ALP language is defined as a proof procedure. The first implementations of ALP proof-procedures were based on the meta-interpretation technique, which is flexible but limits the use of the built-in predicates of logic programming systems. Another, more recent, approach exploits theoretical results on the similarity between abducibles and constraints. With this approach, which bears the advantage of an easy integration with built-in predicates and constraints, Constraint Handling Rules has been the language of choice for the implementation of abductive proof procedures. The first CHR-based implementation mapped integrity constraints directly to CHR rules, which is an efficient solution, but prevents defined predicates from being in the body of integrity constraints and does not allow a sound treatment of negation by default. In this paper, we describe the CHR-based implementation of the SCIFF abductive proof-procedure, which follows a different approach. The SCIFF implementation maps integrity constraints to CHR constraints, and the transitions of the proof-procedure to CHR rules, making it possible to treat default negation, while retaining the other advantages of CHR-based implementations of ALP proof-procedures.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We discuss the static verification of declarative Business Processes. We identify four desiderata about verifiers, and propose a concrete framework which satisfies them. The framework is based on the ConDec graphical notation for modeling Business Processes, and on Abductive Logic Programming technology for verification of properties. Empirical evidence shows that our verification method seems to perform and scale better, in most cases, than other state of the art techniques (model checkers, in particular). A detailed study of our framework's theoretical properties proves that our approach is sound and complete when applied to ConDec models that do not contain loops, and it is guaranteed to terminate when applied to models that contain loops.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.